Claim Missing Document
Check
Articles

Found 2 Documents
Search

Bioprocessing of Avian Influenza VLP Vaccine using Baculovirus-Insect Cell Expression System Chrisdianto, Matthew; Damai, Fedric Intan; Mulyono, Roselyn; Virginia, Jesslyn Audrey; K, Katherine
Indonesian Journal of Life Sciences 2022: IJLS Vol 04 No .01
Publisher : Indonesia International Institute for Life Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (604.204 KB) | DOI: 10.54250/ijls.v4i1.69

Abstract

Vaccines are widely used as a preventive measure against influenza virus infection. However, these vaccines gain concerns regarding their biosafety due to implementing the highly pathogenic avian influenza in the production process. A breakthrough that uses insect cells due to their ability to produce protein rapidly, especially viral antigens for the potential avian influenza outbreak, is being extensively researched. Insect cells infected by baculovirus (BV) are utilized to express proteins known as virus-like protein (VLP). The objective of this review is to assess the production of the avian influenza vaccine (i.e., H5N1 and H7N9 strains) made from VLP by utilizing a baculovirus-insect cell (BV-IC) expression system. A narrative review was conducted by screening international indexed journals from the last 10 years about the topic. The result shows that VLP vaccine development using BV-IC expression can be a cheaper and safer alternative to conventional vaccines while also producing a high yield. The upstream process consists of the IC infection by the BV and BV-IC cell cultivation inside the bioreactor. The downstream process consists of the purification of the VLP product until it becomes a functioning vaccine. The VLP vaccine has improved immunogenic quality, enabling a more specific immune response than other vaccines. However, studies performed on avian influenza vaccines produced by the BV-IC expression system are still lacking. Therefore, further studies are required to improve the current VLP vaccine production processes.
Mini Review: GLP-1 Modification, Development, and Improvement Damai, Fedric Intan; Purwanto, Gracia Christine Lembong; Wardiana, Andri; Wisnuwardhani, Popi Hadi; Agustiyanti, Dian Fitria; Fathurahman, Alfi Taufiq; Ningrum, Ratih Asmana
Annales Bogorienses Vol. 26 No. 1 (2022): Annales Bogorienses
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/ann.bogor.2022.v26.n1.1-12

Abstract

Diabetes Mellitus Type 2 (DM-2) is the condition where the body comes to be insensitive or even resistant towards insulin, thus resulting in deficient insulin secretion from beta cells in the pancreas. Compared with the available treatments, Glucagon-like peptide 1 (GLP-1) is considered a natural treatment to cure DM-2 due to its characteristic as an incretin hormone, where one of its functions is to improve insulin secretion and enhance beta-cell glucose sensitivity. However, GLP-1 has a limitation, which is a rapid half-life due to active degradation activities in the body. Therefore, many studies have been conducted to develop and improve the pharmacological activity of GLP-1 through structural modification and yield improvement, which are thoroughly reviewed in this paper. Structural modification of GLP-1 covers amino acid substitutions by referring to the GLP-1 analog, Exendin4, to prevent the dipeptidyl peptidase-4 (DPP-4) degradation activity and protein fusion with an additional chain to extend the half-life during administration. The yield improvement at the overexpression of GLP-1 tandem repeats sequences can increase the transcribed genes’ yield. The studies show that specific amino acid substitutions and IgG heavy chain constant regions or Fc-based fusion genes successfully enhance the pharmacological activities of GLP-1. At the same time, Pichia pastoris expression system managed to yield 219.2 mg/l target protein, where the purified target protein is capable of producing 10× yield of a single GLP analog. Further research could include the utilization of these findings in vitro as a GLP-1 analog-based therapeutics to treat DM-2.