Claim Missing Document
Check
Articles

Found 3 Documents
Search

Development of robotic arm control using Arduino controller Chenchireddy, Kalagotla; Dora, Radhika; Mulla, Gouse Basha; Jegathesan, Varghese; Sydu, Shabbier Ahmed
IAES International Journal of Robotics and Automation (IJRA) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v13i3.pp264-271

Abstract

The advance of Arduino-based technology has spurred innovation in the realm of robotic arm control, offering a cost-effective and accessible platform for enthusiasts and professionals alike. This paper presents the development of robot arm control using an Arduino controller. The work involves the integration of Arduino microcontrollers and sensors to enable precise and dynamic control of a robotic arm. The proposed robot is controlled by 4 servo motors, the motors rotate left, right, front, and back. The paper discusses the challenges encountered during the development process and proposes solutions, paving the way for further advancements in this burgeoning field. With Arduino's widespread availability and affordability, the presented robotic arm control system holds promise for expanding the accessibility of robotics education and fostering innovation in automation technologies. This paper provides a glimpse into the promising synergy between Arduino and robotic arm control, highlighting the contributions and implications of this technology in shaping the future of automation.
Solar tracker using Arduino microcontroller and light dependent resistor Chenchireddy, Kalagotla; Mulla, Gouse Basha; Jagan, Vadthya; Sultana, Waseem; Sydu, Shabbier Ahmed; Giddalur, Eswaraiah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp70-75

Abstract

This paper presents a dual-axis solar tracker using Arduino and LDRs. The aim of the proposed paper is to enhance the competence of solar energy harvesting by developing an intelligent solar tracking system. This system employs light-dependent resistors (LDRs) as sensors to detect ambient light levels, enabling precise adjustments of solar panels along both azimuth and elevation axes. The Arduino microcontroller serves as the intellect of the system, orchestrating the synchronized movement of dual-axis servo motors to align solar panels optimally with the sun's point during the day. The core functionality of the solar tracker involves real-time monitoring of LDR readings to calculate the solar azimuth and elevation angles. These angles are then used to situation the solar panels dynamically, ensuring they are constantly oriented near the sun for maximum energy absorption. The implementation of the dual-axis solar tracker using Arduino and LDRs offers several advantages, including increased energy output, better system efficiency, and a reduction in dependency on fixed solar installations. The low-cost and adaptable nature of the proposed system makes it suitable for various applications, such as residential solar installations, off-grid power systems.
Design of a prototype firefighting robot based on an Arduino microcontroller using machine learning technique Chenchireddy, Kalagotla; Dora, Radhika; Jagan, Vadthya; Mulla, Gouse Basha; Jegathesan, Varghese; Sydu, Shabbier Ahmed
IAES International Journal of Robotics and Automation (IJRA) Vol 14, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v14i1.pp31-37

Abstract

The design and implementation of this paper are mainly based on control of the autonomous firefighting robot. In recent years, robotics has turned out to be an ingredient in which many people have shown their interest. Robotics has gained popularity due to the advancement of many technologies of computing and nanotechnologies. The output of the fire sensor is connected to the Arduino controller that controls the movement of the vehicle and the operation of spraying water. An infrared sensing circuit is designed with the infrared sensors placed in front of the vehicle to avoid collision with the obstacles. A total of two inbuilt reduction geared direct current motors are used in the paper for the robot movement in all the directions forward, backward, right, and left directions. For more practicality, a small water tank with a pumping motor is also arranged over the chassis and the water sprinkler pipe that is firmly fixed over the plate where the sensor is arranged can deliver water with some force. When the sensor detects the fire, the sprinkler is positioned toward fire flames; the pumping motor will be energized automatically to extinguish the fire. The main advantage of the proposed system automatically controls the fire by using advanced control techniques.