Claim Missing Document
Check
Articles

Found 2 Documents
Search

Determination of Neutron Flux in Brain Cancer Boron Neutron Capture Therapy Using Monte Carlo Simulation Arianto, Fajar; Handayani, Liska Tri; Budi, Wahyu Setia; Basuki, Prasetyo
Physics Communication Vol 6, No 2 (2022): August 2022
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/physcomm.v6i2.40277

Abstract

Boron Neutron Capture Therapy (BNCT) is a relatively safer technology for killing cancer cells, one of which is the Glioblastoma multiforme. One of the main components of the BNCT equipment is the collimator which functions as an exit point for epithermal neutron particles that hit cancer cells. In addition to the experimental method, BNCT research can be carried out by modeling, including using the MCNPX software based on the Monte Carlo Method. This research aimed to determine the flux distribution of fast and epithermal neutrons and the dose rate of fast neutrons and gamma that hit the target cancer cells in the phantom head of ORNL MIRD. Modeling using the MCNPX software has three main parts: cell cards, surface cards, and data cards. A tally is used on the data card to calculate the neutron flux. Based on the calculation of the modeling results, the flux of epithermal neutron is 2.87 x 109 n/cm2.s. The dose ratio of the epithermal to the fast neutron flux is 2.29 x 10-14 Gy.cm2/n. Then, the balance of the dose rate of the epithermal to the gamma is 1.64 x 10-14 Gy.cm2/n, and the ratio of epithermal to thermal neutron flux is 0.004. In this study, the epithermal neutron flux hitting the target cancer cells in cell target was moderated at 4 cm so that at a depth of 8 cm, the energy was converted into thermal neutrons. Based on the analysis of the results, it can be concluded that the neutron flux that will interact with cancer tissue is thermal neutrons, not epithermal neutron flux.
Evaluasi Dosis Efektif Boron Neutron Capture Therapy (BNCT) Glioblastoma Multiforme Menggunakan Simulasi Monte Carlo Handayani, Liska Tri; Budi, Wahyu Setia; Arianto, Fajar
Jurnal Fisika Unand Vol 12 No 4 (2023)
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jfu.12.4.683-689.2023

Abstract

Glioblastoma multiforme merupakan kanker otak stadium IV yang sangat sulit diobati dan umumnya terjadi pada hemisfer serebrum otak. Terapi BNCT telah dikembangkan untuk pengobatan glioblastoma yang lebih aman, namun hamburan neutron dan foton gamma yang berasal dari terapi pada organ at risk ini perlu dievaluasi menggunakan simulasi. Metode yang dilakukan dengan mensimulasikan phantom ORNL-MIRD bagian kepala dan leher menggunakan program MCNPX. Arah penyinaran radiasi terhadap pasien dibuat menjadi dua arah yaitu RLAT dan TOP. Perhitungan dosis dalam BNCT dilakukan dengan mencari nilai dosis serap, dosis ekuivalen, dan dosis efektif. Dosis efektif dianalisis menggunakan ICRP publikasi 60 dan 103. Berdasarkan perhitungan dosis serap, arah penyinaran yang paling efektif adalah arah penyinaran TOP, dengan persentase dosis serap pada organ at risk relatif aman terutama pada organ tiroid, dan nilai pada organ cranium, otak, tiroid, dan kulit berturut-turut sebesar 11,4%, 10,15%, 0,002%, dan 6,4%. Nilai dosis efektif pada ICRP 60 dan 103 bernilai sama pada organ cranium dan kulit. Namun, pada organ tiroid, nilai dosis efektif dengan ICRP 103 lebih rendah dibandingkan ICRP 60. Hal ini menandakan berkurangnya resiko untuk penyakit terwaris pada tiroid, dan pada organ otak hanya dihitung menggunakan ICRP 103