Claim Missing Document
Check
Articles

Found 2 Documents
Search

Evaluasi Tingkat Usability Aplikasi Halodoc Menggunakan Pengukuran System Usability Scale Setianingsih; Benny Muyarman; Syifa Maulida Akmalia; Lim Jong Su; Julius Jery Nolasco; Riya Widayanti
Nusantara Journal of Multidisciplinary Science Vol. 1 No. 12 (2024): NJMS - Juli 2024
Publisher : PT. Inovasi Teknologi Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Di tengah situasi global yang semakin tidak menentu dan kebutuhan akan akses layanan kesehatan yang cepat dan andal, Halodoc muncul sebagai solusi inovatif yang memenuhi kebutuhan masyarakat Indonesia. Sebagai platform kesehatan digital terkemuka di Indonesia, Halodoc memungkinkan pengguna untuk dengan mudah berkonsultasi dengan dokter, memesan obat-obatan, dan mendapatkan layanan kesehatan lainnya secara online. Namun dari hasil pengamatan, masih terdapat beberapa ulasan negatif yang menunjukkan kekurangan dalam kepuasan pengguna terhadap aplikasi Halodoc, terutama dalam hal kegunaan. Sehingga proses evaluasi system diperlukan untuk memantau dan mengetahui sisi apa saja yang memerlukan peningkatan demi mempertahankan konsistensi kualitas platform Halodoc dalam memahami dan memenuhi kebutuhan pengguna. Pada penelitian kali ini kami menggunakan metode pertanyaan skala likert dengan memfokuskan kepada empat komponen utama yakni Learnability, Eficiency, Memorability, serta Satisfaction yang secara eksplisit diturunkan menjadi 10 butir pertanyaan menggunakan pengukuran System Usability Scale. Menurut hasil yang diperoleh, ternyata nilai rata-rata System Usability Scale (SUS) menunjukan bahwa perlunya peningkatan pengalaman pengguna, dengan tantangan terkait navigasi antarmuka dan proses transaksi tebus obat online
Implementasi Artificial Intelligence dalam Meningkatkan Cyber Security: Analisis ancaman dan Pencegahan Lim Jong Su; Binastya Anggara Sekti
Prosiding SISFOTEK Vol 8 No 1 (2024): SISFOTEK VIII 2024
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In today's digital age, cyber threats are becoming more complex and sophisticated.The aim of this study is to analyze the role of artificial intelligence (AI) in improving cybersecurity through threat detection and prevention. By integrating AI techniques such as machine learning and deep learning, cybersecurity systems can detect suspicious behavior patterns and identify threats in real-time.A comprehensive literature review was conducted to explore different AI approaches applied in this field, including anomaly detection analytics, threat intelligence, and automated response. The use of artificial intelligence can significantly improve the accuracy of threat detection and cyber incident response. Moreover, case studies of several organizations that have used AI for cybersecurity have shown increased effectiveness and efficiency in dealing with cyberattacks. However, there are still challenges to overcome, such as: B. Limited training data, interpretability of AI models, and the need for qualified experts. Although AI has great potential to improve cybersecurity, collaboration between technology and human expertise remains crucial to address growing threats.Thus, not only is cybersecurity improving, but there is also an increasing need to develop artificial intelligence (AI) systems that take cybersecurity threats into account in order to attack the security of information systems.