Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

A multi-criteria trust-enhanced collaborative filtering algorithm for personalized tourism recommendations Shambour, Qusai Y.; Al-Zyoud, Mahran M.; Alsaaidah, Adeeb M.; Abualhaj, Mosleh M.; Abu-Shareha, Ahmad A.
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1919-1928

Abstract

The exponential growth of online information has LED to significant challenges in navigating data overload, particularly in the tourism industry. Travelers are overwhelmed with choices regarding destinations, accommodations, dining, and attractions, making it difficult to select options that best meet their needs. Recommender systems have emerged as a promising solution to this problem, aiding users in decision-making by providing personalized suggestions based on their preferences. Traditional collaborative filtering (CF) methods, however, face limitations, such as data sparsity and reliance on single rating scores, which do not fully capture the complexity of user preferences. This study proposes a hybrid multi-criteria trust-enhanced CF (HMCTeCF) algorithm to improve the accuracy and robustness of tourism recommendations. HMCTeCF improves the quality of recommendations by integrating multi-criteria user preferences with trust relationships among users and between items. Experimental results using real-world datasets, including Restaurants-TripAdvisor and Hotels-TripAdvisor, demonstrate that HMCTeCF outperforms benchmark CF-based recommendation methods. It achieves higher prediction accuracy and coverage rate, effectively addressing the data sparsity problem. This innovative algorithm facilitates a more personalized and enriching travel experience, particularly in scenarios with limited user data. The findings highlight the importance of considering multiple criteria and trust relationships in developing robust recommendation systems for the tourism industry.
Enhancing malware detection through self-union feature selection using gray wolf optimizer Abualhaj, Mosleh M.; Shambour, Qusai Y.; Abu-Shareha, Ahmad Adel; Al-Khatib, Sumaya N.; Amer, Amal
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 1: January 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i1.pp197-205

Abstract

This research explores the impact of malware on the digital world and presents an innovative system to detect and classify malware instances. The suggested system combines a random forest (RF) classifier and gray wolf optimizer (GWO) to identify and detect malware effectively. Therefore, the suggested system is called RFGWO-Mal. The RFGWO-Mal system employs the GWO for feature selection in binary and multiclass classification scenarios. Then, the RFGWO-Mal system uses a novel self-union feature selection approach, combining features from different subsets of binary and multiclass classification extracted using the GWO optimizer. The RF classifier is then applied for classifying malware and benign data. The comprehensive Obfuscated-MalMem2022 dataset was utilized to evaluate the suggested RFGWO-Mal system, which has been implanted using Python. The suggested RFGWO-Mal system achieves significantly improved results using the novel self-union feature selection approach. Specifically, the RFGWO-Mal system achieves an outstanding accuracy of 99.95% in binary classification and maintains a high accuracy of 86.57% with multiclass classification. The findings underscore the achievement of a self-union feature selection approach in enhancing the performance of malware detection systems, providing a valuable contribution to cybersecurity.