Nabil Alkhatib, Sumaya
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Detecting spam using Harris Hawks optimizer as a feature selection algorithm Abualhaj, Mosleh M.; Abu-Shareha, Ahmad Adel; Nabil Alkhatib, Sumaya; Shambour, Qusai Y.; Alsaaidah, Adeeb M.
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.9198

Abstract

The Harris Hawks optimization (HHO) was used in this study to enhance spam identification. Only the features with a high influence on spam detection have been selected using the HHO metaheuristic technique. The HHO technique's assessment of the selected features was conducted using the ISCX-URL2016 dataset. The ISCX-URL2016 dataset has 72 features, but the HHO technique reduces that to just 10 features. Extra tree (ET), extreme gradient boosting (XGBoost), and support vector machine (SVM) techniques are used to complete the classification assignment. 99.81% accuracy is attained by the ET, 99.60% by XGBoost, and 98.74% by SVM. As we can see, with the ET, XGBoost, and k-nearest neighbor (KNN) techniques, the HHO technique achieves accuracy above 98%. Nonetheless, the ET technique outperforms the XGBoost and KNN techniques. ET outperforms other methods due to its robust ensemble approach, which benefits from the diverse and relevant feature subset selected by HHO. HHO's effective reduction of noisy or redundant features enhances ET's ability to generalize and avoid overfitting, making it a highly efficient combination for spam detection. Thus, it looks promising to combat spam emails by combining the ET technique for classification with the HHO technique for feature selection.