Claim Missing Document
Check
Articles

Found 4 Documents
Search

A novel approach for e-health recommender systems Alsaaidah, Adeeb M.; Shambour, Qusai Y.; Abualhaj, Mosleh M.; Abu-Shareha, Ahmad Adel
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.7749

Abstract

The increasing use of the internet for health information brings challenges due to the complexity and abundance of data, leading to information overload. This highlights the necessity of implementing recommender systems (RSs) within the healthcare domain, with the aim of facilitating more effective and precise healthcare-related decisions for both healthcare providers and users. Health recommendation systems can suggest suitable healthcare items or services based on users' health conditions and needs, including medications, diagnoses, hospitals, doctors, and healthcare services. Despite their potential benefits, RSs encounter significant limitations, including data sparsity, which can lead to recommendations that are unreliable and misleading. Considering the increasing significance of health recommendation systems and the challenge of sparse data, we propose an effective approach to improve precision and coverage in recommending healthcare items or services. This aims to assist users and healthcare practitioners in making informed decisions tailored to their unique needs and health conditions. Empirical testing on two healthcare rating datasets, including sparse datasets, illustrate that our proposed approach outperforms baseline recommendation methods. It excels in improving both the precision and coverage of health-related recommendations, demonstrating effective handling of extremely sparse datasets.
A multi-criteria trust-enhanced collaborative filtering algorithm for personalized tourism recommendations Shambour, Qusai Y.; Al-Zyoud, Mahran M.; Alsaaidah, Adeeb M.; Abualhaj, Mosleh M.; Abu-Shareha, Ahmad A.
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1919-1928

Abstract

The exponential growth of online information has LED to significant challenges in navigating data overload, particularly in the tourism industry. Travelers are overwhelmed with choices regarding destinations, accommodations, dining, and attractions, making it difficult to select options that best meet their needs. Recommender systems have emerged as a promising solution to this problem, aiding users in decision-making by providing personalized suggestions based on their preferences. Traditional collaborative filtering (CF) methods, however, face limitations, such as data sparsity and reliance on single rating scores, which do not fully capture the complexity of user preferences. This study proposes a hybrid multi-criteria trust-enhanced CF (HMCTeCF) algorithm to improve the accuracy and robustness of tourism recommendations. HMCTeCF improves the quality of recommendations by integrating multi-criteria user preferences with trust relationships among users and between items. Experimental results using real-world datasets, including Restaurants-TripAdvisor and Hotels-TripAdvisor, demonstrate that HMCTeCF outperforms benchmark CF-based recommendation methods. It achieves higher prediction accuracy and coverage rate, effectively addressing the data sparsity problem. This innovative algorithm facilitates a more personalized and enriching travel experience, particularly in scenarios with limited user data. The findings highlight the importance of considering multiple criteria and trust relationships in developing robust recommendation systems for the tourism industry.
Detecting spam using Harris Hawks optimizer as a feature selection algorithm Abualhaj, Mosleh M.; Abu-Shareha, Ahmad Adel; Nabil Alkhatib, Sumaya; Shambour, Qusai Y.; Alsaaidah, Adeeb M.
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.9198

Abstract

The Harris Hawks optimization (HHO) was used in this study to enhance spam identification. Only the features with a high influence on spam detection have been selected using the HHO metaheuristic technique. The HHO technique's assessment of the selected features was conducted using the ISCX-URL2016 dataset. The ISCX-URL2016 dataset has 72 features, but the HHO technique reduces that to just 10 features. Extra tree (ET), extreme gradient boosting (XGBoost), and support vector machine (SVM) techniques are used to complete the classification assignment. 99.81% accuracy is attained by the ET, 99.60% by XGBoost, and 98.74% by SVM. As we can see, with the ET, XGBoost, and k-nearest neighbor (KNN) techniques, the HHO technique achieves accuracy above 98%. Nonetheless, the ET technique outperforms the XGBoost and KNN techniques. ET outperforms other methods due to its robust ensemble approach, which benefits from the diverse and relevant feature subset selected by HHO. HHO's effective reduction of noisy or redundant features enhances ET's ability to generalize and avoid overfitting, making it a highly efficient combination for spam detection. Thus, it looks promising to combat spam emails by combining the ET technique for classification with the HHO technique for feature selection.
Improving firewall performance using hybrid of optimization algorithms and decision trees classifier Abualhaj, Mosleh M.; Abu-Shareha, Ahmad Adel; Al-Khatib, Sumaya Nabil; Alsaaidah, Adeeb M.; Anbar, Mohammed
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2839-2848

Abstract

One of the primary concerns of governments, corporations, and even individual users is their level of online protection. This is because a large number of attacks target their primary assets. A firewall is a critical tool that almost every organization uses to protect its assets. However, firewalls become less reliable when they deal with large amounts of data. One method for reducing the amount of data and enhancing firewall performance is feature selection. The main aim of this study is to enhance the firewall's performance by proposing a new feature selection method. The proposed feature selection method combines the strengths of Harris Hawks optimization (HHO) and whale optimization algorithm (WOA). Experiments were performed utilizing the NSL-KDD dataset to measure the effectiveness of the proposed method. The experiments employed the decision trees (DTs) as a machine classifier. The experimental results show that the achieved accuracy is 98.46% when using HHO/WOA for feature selection and DT for classification, outperforming the HHO and WOA when used separately for feature selection. The study's findings offer insightful information for researchers and practitioners looking to improve firewall effectiveness and efficiency in defending internet connections against changing threats.