Claim Missing Document
Check
Articles

Found 7 Documents
Search

Recommendation mobile antivirus for Android smartphones based on malware detection Saputra, Hendra; Zahra, Amalia; Faldi, Faldi; Fadzlul Rahman, Ferry; Harits, Sayekti; Joko Pranoto, Wawan; Rahman, Fathur
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i3.pp3559-3566

Abstract

The proliferation of smartphone malware attacks due to a lack of vigilance in app selection raises serious concerns. Built-in smartphone security features often must be improved to protect devices from these threats. Although numerous articles recommend top-tier antivirus solutions, there need to be more reliable data sources that raise suspicions about undisclosed promotional motives. This research endeavors to establish a ranking of antivirus efficacy to provide optimal recommendations for Android smartphone users. The research methodology entails a meticulous comparison of malware detection and labeling outcomes between various antivirus programs within Virustotal and the labeling system employed by the Euphony application. The comparative results are categorized into three groups: antivirus solutions proficient in identifying specific malware types, those detecting malware presence without categorization, and antivirus software failing to detect malware effectively. The experimental findings present the five leading antivirus solutions, ranked from the highest to lowest scores, as Ikarus, Fortinet, ESET-NOD32, Avast-Mobile, and SymantecMobileInsight. Based on the comprehensive assessment conducted in this study, these solutions are recommended as the top antivirus choices. These recommendations are poised to significantly aid users in selecting the most suitable antivirus protection for their Android smartphones.
ANALISIS KUALITAS JARINGAN INTERNET MENGGUNAKAN METODE DRIVE TEST DI PT MASINDO INTIENERGY PERKASA Farid Azis, Muhammad; Joko Pranoto, Wawan; Hallim, Abdul
Jurnal Mnemonic Vol 8 No 1 (2025): Mnemonic Vol. 8 No. 1
Publisher : Teknik Informatika, Institut Teknologi Nasional malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/mnemonic.v8i1.13265

Abstract

PT Masindo IntiEnergy Perkasa merupakan perusahaan yang bergerak di sektor energi, khususnya batubara yang menggunakan jaringan internet sebagai penunjang aktivitas operasional, tetapi karena letak yang jauh dari perkotaan dan kondisi geografis membuat akses internet kurang stabil. Oleh sebab itu, dilakukan penelitian yang bertujuan untuk menganalisis kualitas jaringan internet di area perusahaan menggunakan metode Drive Test. Pengukuran dilakukan menggunakan aplikasi G-Net Track Pro dan Google Earth pro untuk mengetahui sebaran kualitas jaringan. Hasil penelitian menunjukkan rata-rata nilai RSRP di Jetty (-94,86 dBm), Site (-94,73 dBm), Kantor (-87.71 dBm), dan Mess (-86 dBm) berada dalam kategori "Buruk-Normal". Nilai RSRQ masing-masing area yaitu Jetty (-10,19 dB), Site (-7,71 dB), Kantor (-11.71 dB), dan Mess (-12.10 dB), mengindikasikan kualitas sinyal pada rentang "Normal-Bagus". Rata-rata nilai SINR berada di kategori normal dengan nilai di area Jetty (11 dB), Site (16,72 dB), Kantor (0.5 dB), dan Mess (-1 dB). Sebagai data penguat ditambahkan survei terhadap karyawan yang menunjukkan bahwa 59,4% menggunakan internet selama 1-3 jam per hari, dengan mayoritas keluhan berasal dari Kantor (59,4%), Jetty (37,5%), dan Mess (31,3%). Sebagian besar responden (90,6%) menyarankan peningkatan infrastruktur jaringan internet. Dari hasil penelitian dapat disimpulkan bahwa peningkatan kualitas jaringan diperlukan di area outdoor seperti jetty dan site melalui penambahan alat seperti penguat sinyal atau repeater serta diperlukan pembicaraan dengan pihak penyedia layanan internet. Sementara itu, area indoor seperti kantor dan mess memerlukan penggantian infrastruktur yaitu modem dan penambahan extender untuk cakupan sinyal yang lebih baik
ANALISIS SENTIMEN ULASAN GAME EFOOTBALL 2024 PADA PLAYSTORE MENGGUNAKAN ALGORITMA NAÏVE BAYES Nur Rahman, Rohim; Rahim, Abdul; Joko Pranoto, Wawan
JURNAL ILMIAH INFORMATIKA Vol 13 No 01 (2025): Jurnal Ilmiah Informatika (JIF)
Publisher : LPPM Universitas Putera Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33884/jif.v13i01.9913

Abstract

The rapid development of technology has made access to digital entertainment easy. This includes online games such as eFootball, which has been downloaded more than 100 million times and received mixed reviews on the Google Play Store. This study examines the sentiment of eFootball user ratings using the Naive Bayes algorithm. The methodological process includes data selection, pre-processing, transformation using CountVectorizer and TF-IDF, and classification with Naive Bayes. From 1500 reviews on Google Play Store, the Naive Bayes model obtained 85% accuracy, 85% precision, 86% repeatability rate, and 85% F1 score. The results of this study show that Naive Bayes is effective for classifying sentiment from eFootball game ratings.
IMPLEMENTASI METODE K-NEAREST NEIGHBOR (KNN) UNTUK MENENTUKAN PENERIMA BANTUAN PANGAN NON TUNAI (BPNT) Hafizh Mas'Ud, Muhammad; Joko Pranoto, Wawan; Hasudungan, Rofilde
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 2 (2025): JATI Vol. 9 No. 2
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i2.12752

Abstract

Bantuan Pangan Non Tunai (BPNT) merupakan program pemerintah Indonesia yang bertujuan untuk mendukung kebutuhan pangan masyarakat kurang mampu melalui bantuan berbasis non-tunai. Namun, dalam implementasinya seringkali ditemukan permasalahan penerima bantuan yang tidak tepat sasaran, seperti keluarga dengan kondisi ekonomi stabil yang terdaftar sebagai penerima, sementara keluarga yang lebih membutuhkan justru terabaikan, sehingga dilakukan klasifikasi penerima Bantuan Pangan Non Tunai (BPNT) menggunakan metode K-Nearest Neighbor (KNN). K-Nearest Neighbor (KNN) merupakan algoritma pembelajaran mesin yang bekerja dengan mengklasifikasikan data berdasarkan kedekatan atau jarak data baru terhadap data yang telah dilabeli sebelumnya. Data penerima BPNT diklasifikasikan menggunakan beberapa variabel, seperti jenis pekerjaan, jumlah penghasilan, dan jumlah tanggungan.Proses klasifikasi melibatkan beberapa tahapan penting, yaitu inisialisasi parameter awal, perhitungan jarak antar data menggunakan metrik Euclidean, dan penentuan klasifikasi akhir melalui proses voting mayoritas dari tetangga terdekat dengan nilai K yang telah ditentukan, sehingga penelitian ini menemukan bahwa metode K-Nearest Neighbor (KNN) mampu menghasilkan akurasi klasifikasi sebesar 87,56%. Dengan demikian, metode ini dapat diandalkan sebagai solusi untuk mendukung penentuan penerima bantuan yang lebih tepat sasaran.
TRANSFORMING RURAL EDUCATION WITH DIGITAL ASSESSMENT TOOLS: A CASE STUDY OF SOCRATIVE IN SAROLANGUN, INDONESIA Yaakub, Saleh; Joko Pranoto, Wawan; Safitri Windiarti, Ika; Priyanti, Rida
Jurnal Abdimas UM Jambi Vol. 2 No. 1 (2025): Jurnal Abdimas UM Jambi
Publisher : LPPM Universitas Muhammadiyah Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53978/jaum.v2i1.525

Abstract

Purpose: This study explores the implementation of Socrative, a digital assessment tool, to enhance teaching and learning in rural primary schools in Sarolangun, Indonesia. It addresses persistent challenges such as limited digital literacy, inadequate infrastructure, and low student engagement. The study aligns with the Indonesian government’s "Merdeka Belajar" curriculum, emphasizing the integration of modern technologies into education. Methods: A mixed-methods approach was employed, incorporating qualitative and quantitative data collection. Teachers participated in training workshops covering Socrative’s functionalities, followed by a three-month classroom implementation phase. Data were gathered through pre- and post-intervention surveys, classroom observations, and interviews with teachers and administrators. Descriptive statistics and thematic analysis were used to evaluate the intervention’s impact. Results: The findings indicate a significant improvement in teacher digital literacy, with proficiency levels increasing from 35% to 85% post-intervention. Student engagement in classrooms using Socrative rose by 40% compared to traditional methods. However, challenges such as limited internet connectivity and device availability were identified as barriers to scalability. Despite these challenges, the study demonstrated the feasibility of integrating digital tools in resource-constrained environments. Conclusions: The implementation of Socrative proved effective in addressing digital literacy and engagement gaps in rural education.
Penerapan Metode Forward Selection dan ADASYN Pada Algoritma SVM Untuk Klasifikasi Data Kecelakaan Lalu Lintas Muhammad Fadly Ramadhani; Taghfirul Azhima Yoga Siswa; Joko Pranoto, Wawan
Buffer Informatika Vol. 11 No. 2 (2025): Buffer Informatika
Publisher : Department of Informatics Engineering, Faculty of Computer Science, University of Kuningan, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Di Indonesia, khususnya kota Samarinda, angka kecelakaan lalu lintas menunjukkan tren peningkatan yang mengkhawatirkan. Jumlah kecelakaan meningkat dari 97 kasus pada tahun 2021 menjadi 102 kasus pada tahun 2022, dan mencapai 173 kasus pada tahun 2023. Penelitian ini bertujuan untuk meningkatkan akurasi klasifikasi tingkat kecelakaan lalu lintas dengan mengimplementasikan algoritma Support Vector Machine (SVM) yang dikombinasikan dengan metode seleksi fitur Forward Selection dan teknik oversampling ADASYN. Dataset yang digunakan merupakan data kecelakaan dari Polresta Samarinda periode 2020–2024 dengan 35 atribut, yang diseleksi menjadi 13 atribut relevan. Penelitian dilakukan melalui tahapan data pre-processing, balancing, pemodelan SVM, serta evaluasi menggunakan 10-fold cross-validation. Hasil pengujian menunjukkan bahwa penerapan ADASYN mampu meningkatkan akurasi model dari 70,75% menjadi 96,38%. Peningkatan lebih lanjut dicapai dengan Forward Selection, menghasilkan akurasi hingga 98,00%. Temuan ini membuktikan bahwa seleksi fitur dan penyeimbangan kelas memiliki kontribusi signifikan dalam memperkuat performa model klasifikasi SVM untuk analisis kecelakaan lalu lintas.
Analisis Kecelakaan Lalu Lintas Berbasis Decision Tree Terintegrasi Forward Selection dan Metode ADASYN Muhammad Wildan Hadinata; Taghfirul Azhima Yoga Siswa; Joko Pranoto, Wawan
Buffer Informatika Vol. 11 No. 2 (2025): Buffer Informatika
Publisher : Department of Informatics Engineering, Faculty of Computer Science, University of Kuningan, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Di Indonesia, Angka kecelakaan lalu lintas juga menunjukkan situasi yang mengkhawatirkan. Pada tahun 2023, terjadi sebanyak 665 kasus kecelakaan lalu lintas di provinsi Kalimantan Timur menurut data BPS Provinsi Kaltim. Penelitian ini bertujuan untuk mengembangkan model klasifikasi tingkat keparahan kecelakaan lalu lintas dengan mengintegrasikan metode Adaptive Synthetic Sampling (ADASYN) dan Forward Selection ke dalam algoritma Decision Tree. Data yang digunakan merupakan data kecelakaan dari Polresta Kota Samarinda periode 2020-2024 yang terdiri dari 35 fitur. Proses penelitian mencakup tahapan data preprocessing, feature selection dengan Forward Selection, dan pembagian data testing dan training dengan 10k-fold validation. Permodelan menggunakan algoritma Decision Tree dan evaluasi model menggunakan confusion matrix untuk mencari akurasi, presisi, recall, dan f1-score. Hasil penelitian menunjukkan fitur yang paling signifikan terhadap klasifikasi kecelakaan lalu lintas adalah cuaca, jumlah meninggal dunia, jumlah luka ringan dan jumlah luka berat. Penerapan ADASYN berhasil meningkatkan akurasi dari 69,44% menjadi 76,83%. Sedangkan penambahan seleksi fitur Forward Selection lebih lanjut meningkatkan akurasi hingga 99,06%.