Claim Missing Document
Check
Articles

Found 3 Documents
Search

PENERAPAN METODE NAIVE BAYES KLASIFIKSI KELAYAKAN PENERIMA BANTUAN PANGAN NON TUNAI (BPNT) Sofie Azizah, Jahra; Pranoto, Wawan Joko; Hasudungan, Rofilde
Jurnal Mnemonic Vol 8 No 1 (2025): Mnemonic Vol. 8 No. 1
Publisher : Teknik Informatika, Institut Teknologi Nasional malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/mnemonic.v8i1.12778

Abstract

Program Bantuan Pangan Non Tunai (BPNT) masih menghadapi kendala dalam menentukan penerima yang benar-benar layak sehingga diperlukan metode klasifikasi yang dapat meningkatkan ketepatan dalam seleksi penerima bantuan. Penelitian ini bertujuan untuk mengklasifikasikan kelayakan penerima BPNT di Kelurahan Bukit Biru menggunakan metode Naïve Bayes. Data yang digunakan mencakup 1041 data kelayakan penerima BPNT yang diperoleh dari Kelurahan Bukit Biru pada tahun 2023 dengan data yang mencakup jumlah penghasilan, jumlah tanggungan, jumlah kendaraan, status perkawinan, jenis pekerjaan, dan kondisi rumah. Model Naïve Bayes diterapkan dengan pembagian data latih dan data uji dengan rasio 9:1. Naïve Bayes bekerja dengan menghitung probabilitas setiap kelas berdasarkan atribut yang diberikan dan menentukan hasil akhir berdasarkan probabilitas tertinggi, menjadikannya metode yang efektif untuk klasifikasi data BPNT. Hasil penelitian menunjukan bahwa metode Naïve Bayes berhasil menentukan kelas kedalam dua kategori yaitu layak atau tidak layak dengan akurasi sebesar 90%. Oleh karena itu diharapkan penelitiaan ini dapat membantu meningkatkan ketepatan sasaran dalam penyaluran bantuan sosial. Dengan demikian, penelitian ini dapat berkontribusi dalam meningkatkan efisiensi program bantuan sosial dan mendukung pengentasan kemiskinan.
IMPLEMENTASI METODE K-NEAREST NEIGHBOR (KNN) UNTUK MENENTUKAN PENERIMA BANTUAN PANGAN NON TUNAI (BPNT) Hafizh Mas'Ud, Muhammad; Joko Pranoto, Wawan; Hasudungan, Rofilde
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 2 (2025): JATI Vol. 9 No. 2
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i2.12752

Abstract

Bantuan Pangan Non Tunai (BPNT) merupakan program pemerintah Indonesia yang bertujuan untuk mendukung kebutuhan pangan masyarakat kurang mampu melalui bantuan berbasis non-tunai. Namun, dalam implementasinya seringkali ditemukan permasalahan penerima bantuan yang tidak tepat sasaran, seperti keluarga dengan kondisi ekonomi stabil yang terdaftar sebagai penerima, sementara keluarga yang lebih membutuhkan justru terabaikan, sehingga dilakukan klasifikasi penerima Bantuan Pangan Non Tunai (BPNT) menggunakan metode K-Nearest Neighbor (KNN). K-Nearest Neighbor (KNN) merupakan algoritma pembelajaran mesin yang bekerja dengan mengklasifikasikan data berdasarkan kedekatan atau jarak data baru terhadap data yang telah dilabeli sebelumnya. Data penerima BPNT diklasifikasikan menggunakan beberapa variabel, seperti jenis pekerjaan, jumlah penghasilan, dan jumlah tanggungan.Proses klasifikasi melibatkan beberapa tahapan penting, yaitu inisialisasi parameter awal, perhitungan jarak antar data menggunakan metrik Euclidean, dan penentuan klasifikasi akhir melalui proses voting mayoritas dari tetangga terdekat dengan nilai K yang telah ditentukan, sehingga penelitian ini menemukan bahwa metode K-Nearest Neighbor (KNN) mampu menghasilkan akurasi klasifikasi sebesar 87,56%. Dengan demikian, metode ini dapat diandalkan sebagai solusi untuk mendukung penentuan penerima bantuan yang lebih tepat sasaran.
Digital Business Implementation for the Development of Basreng and Sus Kering Snack Sales through Instagram and Shopee in Samarinda City: Penerapan Bisnis Digital untuk Pengembangan Penjualan Snack Basreng dan Sus Kering melalui Instagram dan Shopee di Kota Samarinda Reza, Andi; Hasudungan, Rofilde; Ilham, Muhammad Fauzan Nur; Andromeda, Radhitya; Yahya, Alan; Rudiman
Journal of Empowerment and Community Service (JECSR) Vol. 3 No. 1 (2023): November
Publisher : Wadah Inovasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53622/jecsr.v3i1.372

Abstract

The implementation of digital business has become a key strategy to enhance the competitiveness and sales of MSME products, particularly in the snack sector such as Basreng and Sus Kering in Samarinda City. This community service activity aims to develop product marketing through the utilization of digital platforms Instagram and Shopee. The methods applied include designing product visual identity, creating promotional content, and collaborating with MSME actors in packaging and product distribution processes. The results show that Instagram is effective in building brand awareness and consumer engagement, while Shopee facilitates transactions and expands market reach. The digital business implementation is also supported by the use of supporting applications such as Canva for promotional design. In conclusion, digital marketing strategies can increase exposure and sales of MSME products, providing innovative solutions to conventional marketing challenges.