Shankara Chari, Gowrishankar Shiva
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Real-time driver drowsiness detection based on integrative approach of deep learning and machine learning model Shankara Chari, Gowrishankar Shiva; Prashant, Jyothi Arcot
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp592-602

Abstract

Driver drowsiness is a major factor that contributing to road accidents. Several researches are ongoing to detect driver drowsiness, but they suffer from the complexity and cost of the models. This paper introduces a hybrid artificial intelligence (AI)-driven framework integrating deep learning (DL) and machine learning (ML) models for real-time drowsiness detection. The system utilizes a robust DL model to classify driver states based on facial images and support vector machine (SVM) model is trained to develop a cost-efficient yet robust facial landmark detector to extract key features such as eye aspect ratio (EAR) and mouth aspect ratio (MAR). We also introduce a multi-stage decision fusion mechanism that combines convolutional neural network (CNN) probability scores with EAR/MAR thresholds to enhance detection reliability and reduce false positives. Experimental results demonstrate that the proposed model achieves 98% accuracy and F1-score, significantly outperforming traditional DL approaches. Additionally, the SVM-based landmark predictor shows improved efficiency with lower mean squared error (MSE) without having higher computational requirements.