Abraham, Jacob
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Frequency reconfigurable microstrip patch antenna for multiband applications Abraham, Jacob; Natarajan, Kirthika; Andi, Senthilkumar; Mariyarose, Jemin Vijayaselvan; Alagarsamy, Manjunathan; Suriyan, Kannadhasan
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 13, No 2: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v13.i2.pp472-482

Abstract

Wireless communication technology is well-established, and several antennas have been developed and produced specifically for this purpose. However, antenna performance and communication system development need to be enhanced in order to adapt to the present era. The performance of the antenna is significantly influenced by its design. Thus, this work produced a novel wideband antenna design via the use of a frequency reconfigurable approach. In the recommended study, microstrip patch antennas (MPAs) were used in wideband applications to switch frequencies using shunt-series microelectromechanical systems (MEMS). The suggested antenna, which has two switches built into it, is tested in ON-ON, OFF-ON, and OFF-OFF switching scenarios. Radiation pattern, voltage standing wave ratio (VSWR), gain, bandwidth, and return loss are among the antenna performance metrics used to assess the suggested antenna's performance in each switching situation. The simulation findings suggest that the optimal antenna design for usage in wireless communication systems is one that works well with a shunt-series MEMS switch.
Design of a dual-band bandpass filter with shunt stubs for wireless local area network and satellite communication system Abraham, Jacob; Suriyan, Kannadhasan
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 14, No 2: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v14.i2.pp490-496

Abstract

High-performance radio frequency (RF) modules are required in transmitter and reception devices due to the recent expansion of wireless technology. The power amplifier, low-noise amplifier, filter, and mixer are the most crucial components in the RF transmitter/receiver chain. This work presents the design and analysis of a dual-band bandpass filter (BPF) for wireless local area network (WLAN) and C-band satellite applications. Stubs of the proper electrical length that are open and short-circuited are used to implement the filter. The low pass performance is generated by the open-circuited stubs. Short-circuited stubs achieve high-pass performance, while the combination of open and short-circuited stubs achieves bandpass performance. We confirm the filter's behaviour using the advanced design system 2022 simulation tool. The findings of return loss and insertion loss confirm the simulation-level performance analysis of the filter. The result demonstrates the suggested BPF's dual-band behaviour at 4 GHz and 6 GHz.