Claim Missing Document
Check
Articles

Found 2 Documents
Search

Studi In Silico Senyawa Biji Klabet (Trigonella Foenum-Graecum L.) Sebagai Inhibitor Estrogen Alfa Pada Kanker Payudara Anastasya, Gracia; Wensa, Lena; Permata, Shinta; Amatulloh, Asyifa; Tavira, Zulfa; Zuhrotun, Ade
Indonesian Journal of Biological Pharmacy Vol 3, No 3 (2023): IJBP (Desember)
Publisher : Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/ijbp.v3i3.45685

Abstract

AbstrakPrevalensi kanker payudara masih tinggi. Pada tahun 2021 sendiri, kanker payudara menempati urutan pertama sebagai kanker yang umum terjadi pada wanita.  Reseptor dari sel payudara normal dan kebanyakan sel kanker payudara menempel di sirkulasi progesteron dan estrogen. Reseptor estrogen-ɑ merupakan salah satu biomarker sel kanker payudara. Inhibisi ER-ɑ menjadi salah satu target terapi kanker payudara. Senyawa aktif pada biji klabet (Trigonella foenum-graecum L.) telah diketahui memiliki aktivitas antikanker. Dilakukan pengujian prediksi Lipinski Rules of Five, Prediksi Pre-ADMET, dan Penambatan Molekul pada reseptor estrogen-ɑ terhadap 10 senyawa yang terkandung pada biji klabet. Hasil menunjukkan bahwa Diosgenin memiliki potensi sebagai kandidat obat anti kanker payudara dengan nilai energi ikatan -8,34 kkal/mol dan nilai KI 0,77067 uM, namun memiliki nilai %PPB yang tinggi sehingga perlu dilakukan pertimbangan lebih lanjut.Kata kunci: Biji klabet, estrogen-ɑ, kanker payudara, penambatan molekular
The Rise of Artificial Intelligence in Pharmacy: Transforming Medication Management and Patient Care Anastasya, Gracia; Khairinisa, Miski A.
Pharmacology and Clinical Pharmacy Research Vol 9, No 2 (2024)
Publisher : Universitas Padjadjaran, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15416/pcpr.v9i2.57699

Abstract

Artificial intelligence (AI) is rapidly transforming healthcare, with significant implications for pharmacy practice. This review explores the diverse applications of AI in pharmacy, emphasizing its potential to revolutionize medication management, patient care, public health, disease management, and pharmacy workflow efficiency. AI algorithms can analyze a vast amount of patient data, allowing pharmacists to identify potential drug interactions, evaluate medication safety and effectiveness, and offer personalized treatment suggestions. In the realm of public health, AI supports disease management through epidemiological monitoring and targeted interventions. Additionally, AI-driven robotic dispensing systems and automated inventory management enhance pharmacy workflow efficiency by streamlining operations and optimizing resource allocation. Telepharmacy, further augmented by AI, expands access to healthcare, promotes patient engagement, and facilitates remote clinical consultations, thereby improving overall care delivery. Despite these advancements, challenges such as data privacy and potential bias in AI algorithms persist. However, the potential of AI in pharmacy is undeniable. By addressing these challenges and fostering collaboration among pharmacists, AI developers, and regulatory bodies, the future of pharmacy is poised to deliver personalized care, improved patient outcomes, and enhanced public health.This integration of AI into pharmacy practice represents a significant step toward a more effective and patient-centered approach to healthcare.