Aryanto, Eggy
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Deep Learning untuk mendeteksi gangguan lambung melalui citra iris mata Mukhtar, Harun; Baidarus; Aryanto, Eggy; Saputra Sy, Yandiko
Computer Science and Information Technology Vol 4 No 3 (2023): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v4i3.6392

Abstract

The stomach is one of the essential organs of the human digestive system. If the stomach organ cannot work typically, it will cause problems. This is a disease that occurs in the stomach organs. Gastric disease also occurs due to a lack of knowledge about stomach disease, so people ignore the symptoms that arise. Gastric disease is a disease that is considered very serious. If left alone, it can cause other diseases to occur. Generally, finding out the presence of stomach disease is still done manually, and several tests are carried out when stomach disease has recurred. Gastric disorders were classified using 360 iris images taken manually via a digital camera and a web database of iris images. The author used the Radial Basis Function Neural Network (RBFNN) method to classify iris images of patients with gastric disorders in this study. The results obtained from this research can organize the iris images of people with gastric disturbances. Classification of iris images of patients with gastric disorders achieved a training accuracy rate of 65.00%.