Vasha, Zannatun Nayem
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Tomato pest recognition using convolutional neural network in Bangladesh Polin, Johora Akter; Hasan, Nahid; Habib, Md. Tarek; Rahman, Atiqur; Vasha, Zannatun Nayem; Sharma, Bidyut
Bulletin of Electrical Engineering and Informatics Vol 13, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i1.6073

Abstract

The tomato is one of the most popular and well-liked veggies among Asians. It is interesting to note that in Bangladesh, it is the second most significant vegetable consumed. Moreover, tomato is served not only as a vegetable, but it is also served as sauce, jam, etc., and used in making different types of cuisines. But the fact is due to the pests, thousands of tons of tomatoes are harmed every year in Bangladesh. The production of tomatoes in Bangladesh is harmed by a number of dangerous pests. We develop a solution to recognize pests at an early stage. Five different pest types, including aphids, red spider mites, whiteflies, looper caterpillars, and thrips, have been studied in this research. To identify tomato pests, we curated image datasets from online and offline repositories and processed them using a convolutional neural network (CNN) model. We used features from CNN layers for three machine learning algorithms: Random Forest (RF), support vector machine (SVM), and K-Nearest Neighbors (K-NN). This comprehensive approach allowed a thorough comparison of these algorithms in tomato pest recognition. For recognizing tomato pests, our methods generate excellent results. The accuracy of our experiment is 95.49% which indicates the successful completion of the experiment.
Predicting the effects of microcredit on women’s empowerment in rural Bangladesh: using machine learning algorithms Polin, Johora Akter; Sarker, Md. Fouad Hossain; Dolon, Mst Dilruba Khanom; Hasan, Nahid; Rahman, Md. Mahafuzur; Vasha, Zannatun Nayem
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.7169

Abstract

This study aimed to predict the impact of microcredit on women’s empowerment in Bangladesh using machine learning (ML) algorithms. In rural Bangladesh, where microcredit programs are not significantly employed, data for the study was gathered through a survey. The study gathered data on a range of socioeconomic, demographic, and women’s empowerment indicators. The Naive Bayes (NB), sequential minimal optimization (SMO), k-nearest neighbor (k-NN), decision tree (DT), and random forest (RF) ML techniques were used in the investigation. In terms of the prediction of women’s empowerment, the findings indicated that all five algorithms performed well, with the DT having the highest level of accuracy (83.72%). The results of this study have significant consequences for Bangladesh’s microcredit programs and those in nations that are developing. Microcredit programs can focus their efforts on women who, based on their socioeconomic and demographic features, are most likely to benefit from the program by employing ML algorithms. This may result in more successful microcredit projects that support the empowerment of women and general socioeconomic growth.
Depression detection in social media comments data using machine learning algorithms Vasha, Zannatun Nayem; Sharma, Bidyut; Esha, Israt Jahan; Al Nahian, Jabir; Polin, Johora Akter
Bulletin of Electrical Engineering and Informatics Vol 12, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i2.4182

Abstract

Depression is the next level of negative emotions. When a person is in a sad mood or going through a difficult situation and it is not leaving him and giving him pain continuously and he is unable to bear it anymore, that situation is called depression. The last stage of depression occurs in suicide. According to the World Health Organization (WHO), Currently, 4.4% of people in the world are currently suffering from depression. In 2021, fourteen thousand people committed suicide all over the world and the rating of suicide is increasing day by day. So, our study is to find depressed people by their comments, posts, or texts on social media. We collected almost 10,000 data from Facebook posts, comments, and YouTube comments. Data mining and machine learning (ML) algorithms make our work easier and play a big role in easily detecting a person’s emotions. We applied six classifiers to predict depression non-depression and found the best accuracy on a support vector machine (SVM).