Eragamreddy, Gouthami
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Power management system for a hybrid energy storage electric vehicle using fuzzy logic controller Eragamreddy, Gouthami; Gopiya Naik, Sevyanaik
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6608

Abstract

This research work introduces a power management system for a hybrid energy storage system (PMHESS) configuration for urban electric vehicles utilizing a fuzzy logic controller (FLC). Consequently, the configuration includes two DC/DC interleaved converters that establish a connection between the battery and ultra-capacitors (UCs), thereby ensuring a substantial power capacity. The FLC is adaptable and sturdy, considering information from sources other than the vehicle, such as other vehicles or road infrastructure. The study explores incorporating road topography into the control structure to improve hybrid storage performance. Simulation results show that combining lithium batteries with UCs improves the energy source’s performance and reliability. The power management algorithm reduces sudden demands on the battery by considering the slope of the ground. The work proposes energy storage integration for electric vehicles, exploring its benefits through simulations. Overall, the proposed hybrid energy storage system (HESS) demonstrates high efficiency and power for urban electric vehicles. The results are validated using MATLAB/Simulink.
Design and development of AC motor speed controlling system using touch screen with over heat protection Rani, Prathipati Ratna Sudha; Eragamreddy, Gouthami; Inthiyaz, Syed; Ravikanth, Sivangi; Najumunnisa, Mohammad; Rajanna, Bodapati Venkata; Kumar, Cheeli Ashok; Ahammad, Shaik Hasane
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 4: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i4.pp2429-2440

Abstract

Design and implementation of an AC motor speed control and monitoring system based on a touch screen interface with built-in overheat protection, utilizing Arduino, meets the increasing demand for efficient, user-friendly motor control in many industrial applications. This system offers an easy-to-use interface to manage the speed of an AC motor, with real-time feedback and adjustments through a touch screen display. The system employs an Arduino microcontroller, which accepts inputs from the touch screen and processes these to regulate the motor's speed through a pulse width modulation (PWM) method. The system also has an overheat protection system, which it is able to monitor the temperature of the motor via a temperature sensor. When the motor reaches a predetermined temperature, the system automatically shuts off power to avoid damage. The intuitive touch screen facilitates convenient monitoring of motor parameters like temperature, giving a smooth experience to operators. The modular design of the system provides scalability across applications, ranging from household appliances to large industrial systems, with reliability, energy efficiency, and safety in motor-driven processes.
Bidirectional power converter for electrical vehicle with battery charging and smart battery management system Rajanna, Bodapati Venkata; Krishnaiah, Kondragunta Rama; Reddy, Ganta Raghotham; Ahammad, Shaik Hasane; Najumunnisa, Mohammad; Inthiyaz, Syed; Eragamreddy, Gouthami; Sudhakar, Ambarapu; Kolukula, Nitalaksheswara Rao
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 4: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i4.pp2592-2604

Abstract

In electric vehicles (EVs), efficient energy management is critical for reliable power transfer between the battery and motor. This paper presents the design and implementation of a bidirectional DC-DC converter equipped with a smart battery management system (BMS). The system supports bidirectional power flow, operating in boost mode during acceleration and buck mode during regenerative braking, thereby enhancing overall energy efficiency and vehicle performance. A PIC microcontroller governs the system, performing real-time monitoring of key battery parameters such as state of charge (SOC), state of health (SOH), voltage, and temperature. Safety features include automatic cooling fan activation when the temperature exceeds 45 °C and generator startup when battery voltage falls below 23 V. Real-time data is displayed via an LCD interface to improve user interaction and system transparency. The proposed system achieved a conversion efficiency of 90-93% during experimental testing, with stable switching, reliable automation, and effective thermal protection. The embedded energy management system optimizes charging and discharging cycles while preventing overcharging, deep discharge, and thermal stress. This intelligent, automated power converter enhances battery life, improves EV reliability, and contributes to sustainable transportation by enabling features like vehicle-to-grid (V2G) energy transfer. The proposed architecture is well-suited for integration into modern EV infrastructure. Although the system architecture supports future V2G integration, V2G functionality was not implemented or tested in the present experimental setup.