Claim Missing Document
Check
Articles

Found 3 Documents
Search

Combining dual attention mechanism and efficient feature aggregation for road and vehicle segmentation from UAV imagery Nguyen, Trung Dung; Pham, Trung Kien; Ha, Chi Kien; Le, Long Ho; Ngo, Thanh Quyen; Nguyen, Hoanh
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6742

Abstract

Unmanned aerial vehicles (UAVs) have gained significant popularity in recent years due to their ability to capture high-resolution aerial imagery for various applications, including traffic monitoring, urban planning, and disaster management. Accurate road and vehicle segmentation from UAV imagery plays a crucial role in these applications. In this paper, we propose a novel approach combining dual attention mechanisms and efficient multi-layer feature aggregation to enhance the performance of road and vehicle segmentation from UAV imagery. Our approach integrates a spatial attention mechanism and a channel-wise attention mechanism to enable the model to selectively focus on relevant features for segmentation tasks. In conjunction with these attention mechanisms, we introduce an efficient multi-layer feature aggregation method that synthesizes and integrates multi-scale features at different levels of the network, resulting in a more robust and informative feature representation. Our proposed method is evaluated on the UAVid semantic segmentation dataset, showcasing its exceptional performance in comparison to renowned approaches such as U-Net, DeepLabv3+, and SegNet. The experimental results affirm that our approach surpasses these state-of-the-art methods in terms of segmentation accuracy.
Integration of Modbus-Ethernet Communication for Monitoring Electrical Power Consumption, Temperature, and Humidity Le, Long Ho; Ngo, Thanh Quyen; Toan, Nguyen Duc; Nguyen, Chi Cuong; Phong, Bui Hong
Journal of Robotics and Control (JRC) Vol 5, No 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.22456

Abstract

Effective management of electrical energy requires monitoring, controlling, and storing parameters gathered from power measurement devices including voltage, current, temperature, and humidity. This assessment of the quality of electrical energy is essential for management organizations, power companies, and individual consumers to develop efficient electricity usage plans. Based on the requirement, we proposed a hardware implementation for data collection and online communication software integrated with a system for collecting data on consumption of electrical energy. The EM115-Mod CT multifunction industrial meters by FINECO, the KLEA 220P three-phase multifunction meter by KLEMSAN, and the ME96SS–ver.B by MITSUBISHI are involved. Finally, the collected data of electrical consumption, temperature, and humidity can be stored on an SD card, transmitted to the cloud for real-time monitoring on mobile devices, and facilitated by the ESP-WROOM-32 microcontroller from Espressif system.
Integration of Modbus-Ethernet Communication for Monitoring Electrical Power Consumption, Temperature, and Humidity Le, Long Ho; Ngo, Thanh Quyen; Toan, Nguyen Duc; Nguyen, Chi Cuong; Phong, Bui Hong
Journal of Robotics and Control (JRC) Vol. 5 No. 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.22456

Abstract

Effective management of electrical energy requires monitoring, controlling, and storing parameters gathered from power measurement devices including voltage, current, temperature, and humidity. This assessment of the quality of electrical energy is essential for management organizations, power companies, and individual consumers to develop efficient electricity usage plans. Based on the requirement, we proposed a hardware implementation for data collection and online communication software integrated with a system for collecting data on consumption of electrical energy. The EM115-Mod CT multifunction industrial meters by FINECO, the KLEA 220P three-phase multifunction meter by KLEMSAN, and the ME96SS–ver.B by MITSUBISHI are involved. Finally, the collected data of electrical consumption, temperature, and humidity can be stored on an SD card, transmitted to the cloud for real-time monitoring on mobile devices, and facilitated by the ESP-WROOM-32 microcontroller from Espressif system.