Claim Missing Document
Check
Articles

Found 3 Documents
Search

Multi-priority scheduling algorithm for scientific workflows in cloud Albtoush, Alaa; Yunus, Farizah; Mohamad Noor, Noor Maizura
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.7520

Abstract

The public cloud environment has emerged as a promising platform for exe-cuting scientific workflows. These executions involve leasing virtual machines (VMs) from public services for the duration of the workflow. The structure of the workflows significantly impacts the performance of any proposed scheduling approach. A task within a workflow cannot begin its execution before receiving all the required data from its preceding tasks. In this paper, we introduce a multi-priority scheduling approach for executing workflow tasks in the cloud. The key component of the proposed approach is a mechanism that logically or-ders and groups workflow tasks based on their data dependencies and locality. Using the proposed approach, the number of available VMs influences the num-ber of groups (partitions) obtained. Based on the locality of each group’s tasks, the priority of each group is determined to reduce the overall execution delay and improve VM utilization. As the results demonstrate, the proposed approach achieves a significant reduction in both execution costs and time in most scenar-ios
A systematic review of heuristic and meta-heuristic methods for dynamic task scheduling in fog computing environments Talhouni, Hamed; Ali, Noraida Haji; Yunus, Farizah; Atiewi, Saleh; Yahya, Yazrina
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5986-6000

Abstract

The distributed fog node network and variable workloads make task distribution difficult in fog computing. Optimizing computing resources for dynamic workloads with heuristic and metaheuristic algorithms has shown potential. To address changing workloads, these algorithms enable real-time decision-making. This systematic review examines heuristic, meta-heuristic, and real-time dynamic job scheduling strategies in fog computing. Static methods like heuristic and meta-heuristic algorithms can help modify dynamic task scheduling in fog computing situations. This paper covers a current study area that stresses real-time approaches, meta-heuristics, and fog computing environments' dynamic nature. It also helps build reliable and scalable fog computing systems by spotting dynamic task scheduling trends, patterns, and issues. This study summarizes and analyzes the latest fog computing research on task-scheduling algorithms and their pros and cons to adequately address their issues. Fog computing task scheduling strategies are detailed and classified using a technical taxonomy. This work promises to improve system performance, resource utilization, and fog computing settings. The work also identifies fog computing job scheduling innovations and improvements. It reveals the strengths and weaknesses of present techniques, paving the way for fog computing research to address unresolved difficulties and anticipate future challenges.
Enhancing IoT security: a hybrid intelligent intrusion detection system integrating machine learning and metaheuristic algorithm Ghaleb, Sanaa A. A.; Mohamad, Mumtazimah; Ghanem, Waheed; Ngah, Amir; Yunus, Farizah; Alhadi, Arifah Che; Islam Siddique, MD Nurul
Indonesian Journal of Electrical Engineering and Computer Science Vol 40, No 2: November 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v40.i2.pp1040-1049

Abstract

The rapid proliferation of the internet of things (IoT) has introduced significant security and privacy challenges. As IoT devices often have limited computational power and memory, they are highly vulnerable to cyber threats. Traditional intrusion detection systems (IDS) struggle to operate efficiently in these constrained environments, necessitating more adaptive and optimized security solutions. To address these challenges, this study proposes an innovative IDS model, MSAMLP, which combines the moth search algorithm (MSA) with a multilayer perceptron (MLP) classifier. The objective is to enhance the classification accuracy of malicious and benign network traffic while maintaining computational efficiency. The model was evaluated using two widely recognized intrusion detection datasets, benchmarking its performance against existing IDS approaches. Experimental results indicate that MSAMLP outperforms conventional classification models, achieving high accuracy, improved detection rates, and reduced false alarm rates. Its adaptive learning capability ensures better anomaly detection in dynamic IoT environments. In conclusion, the proposed MSAMLP model demonstrates superior performance in securing IoT networks, offering an effective solution to mitigate evolving cyber threats. This research contributes to the advancement of IoT security by introducing a robust and scalable intrusion detection approach.