Ghaleb, Sanaa A. A.
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improved moth search algorithm with mutation operator for numerical optimization problems Ghaleb, Sanaa A. A.; Mohamad, Mumtazimah; Mohammed Ghanem, Waheed Ali Hussein; Alhadi, Arifah Che; Nasser, Abdullah B.; Aldowah, Hanan
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp1022-1031

Abstract

The moth search algorithm (MSA) is a meta-heuristic optimization technique inspired by moth behavior, has shown remarkable efficacy in solving optimization challenges. However, its poor exploration capability results in an imbalance between exploitation and exploration. To address this issue, this research introduces a new mutation operator to enhance exploration by increasing population diversity. The proposed enhanced moth search algorithm (EMSA) aims to expedite convergence and improve overall robustness by exploring new solutions more effectively. Evaluation on ten benchmark functions demonstrates EMSA's superior exploration capabilities, efficiently tackling optimization problems and yielding more optimal solutions within the search space. Compared to conventional MSA and other established algorithms, EMSA delivers well-balanced results, showcasing its effectiveness in optimizing the search space. In the future, the EMSA could potentially find applications in addressing real-world engineering optimization challenges.
Enhancing IoT security: a hybrid intelligent intrusion detection system integrating machine learning and metaheuristic algorithm Ghaleb, Sanaa A. A.; Mohamad, Mumtazimah; Ghanem, Waheed; Ngah, Amir; Yunus, Farizah; Alhadi, Arifah Che; Islam Siddique, MD Nurul
Indonesian Journal of Electrical Engineering and Computer Science Vol 40, No 2: November 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v40.i2.pp1040-1049

Abstract

The rapid proliferation of the internet of things (IoT) has introduced significant security and privacy challenges. As IoT devices often have limited computational power and memory, they are highly vulnerable to cyber threats. Traditional intrusion detection systems (IDS) struggle to operate efficiently in these constrained environments, necessitating more adaptive and optimized security solutions. To address these challenges, this study proposes an innovative IDS model, MSAMLP, which combines the moth search algorithm (MSA) with a multilayer perceptron (MLP) classifier. The objective is to enhance the classification accuracy of malicious and benign network traffic while maintaining computational efficiency. The model was evaluated using two widely recognized intrusion detection datasets, benchmarking its performance against existing IDS approaches. Experimental results indicate that MSAMLP outperforms conventional classification models, achieving high accuracy, improved detection rates, and reduced false alarm rates. Its adaptive learning capability ensures better anomaly detection in dynamic IoT environments. In conclusion, the proposed MSAMLP model demonstrates superior performance in securing IoT networks, offering an effective solution to mitigate evolving cyber threats. This research contributes to the advancement of IoT security by introducing a robust and scalable intrusion detection approach.