Claim Missing Document
Check
Articles

Found 2 Documents
Search

Utilization of dairy waste scum oil for microwave-assisted biodiesel production over KOH-waste eggshell based calcium oxide catalyst Mohd Johari, Siti Aminah; Ayoub, Muhammad; Lee, Jhung Zhi; Rashidi, Nor Adilla; Shamsuddin, M Rashid
International Journal of Renewable Energy Development Vol 13, No 2 (2024): March 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.59995

Abstract

The sustainability can be maintained by utilizing the available waste as feedstock and catalyst such as dairy and eggshell waste respectively for biodiesel production. In this study, the calcium oxide (CaO) synthesized from calcined eggshell was doped with potassium hydroxide (KOH-ECaO) via wet impregnation method and analyzed the catalyst performance on biodiesel production from dairy waste scum oil (DWSO) via microwave assisted transesterification. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy equipped with Energy Dispersive X-ray (SEM-EDX), Brunauer-Emmett-Teller (BET) and Thermogravimetric analysis (TGA). The fatty acid methyl ester (FAME) contents were deduced by Gas Chromatography-Mass Spectrometry (GC-MS). The KOH-ECaO catalyst showed a good potential based on the characterizations analysis such as high pore size (25.5 nm) which supported by SEM pattern analysis. The highest biodiesel production (75%) was obtained at optimum reaction parameters conditions. The optimized conditions were discovered to be 3 wt.% of catalyst, 16:1 of methanol to oil molar ratio, reaction temperature of 65°C and 15 minutes of reaction time as microwave provided faster reaction for the transesterification. These innovative results showed that KOH-ECaO could enhance the biodiesel production from DWSO which encouraged the usage of waste for wealth product.
One pot microwave-assisted synthesis of 2,5-dimethylfuran from bamboo hydrolysate in presence of green solvent and low-cost metal catalyst Lim, Huei Yeong; Rashidi, Nor Adilla; Yusup, Suzana
International Journal of Renewable Energy Development Vol 14, No 3 (2025): May 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.61082

Abstract

This study looked at the one-pot synthesis of 2,5-dimethylfuran (DMF) from glucose-rich bamboo hydrolysate using microwave heating technology in presence of green solvent, Low Transition Temperature Mixture (LTTM), and activated carbon-supported copper catalyst (Cu/AC). While DMF is mainly synthesized by using commercial glucose, the biomass with high cellulose content can also be used. Besides, the conventional synthesis that commonly employs organic solvents and noble metal catalysts has great toxicological and financial barriers. Thus, alternative cheaper and greener solvents and catalysts are needed, such as LTTM and carbon-supported copper. The bamboo hydrolysate was produced via acid hydrolysis with 0.5M sulphuric acid (H2SO4). LTTM was synthesized using choline chloride (ChCl) and malic acid, which were proven to be effective in DMF production in presence of H2SO4. Reaction time, catalyst loading, and LTTM ratio were studied via response surface methodology with DMF yield as the response. Temperature was set at 120 °C in accordance with previous study. The LTTM was found to experience minimal mass loss at this reaction temperature. The Cu/AC catalyst was found to carry mostly reduced copper oxide (CuO) particles, with slight CuO residues, indicating successful synthesis of the catalyst. A quadratic regression model has been developed with R2=0.9481, with expected optimal condition at 1 min reaction time, 1% catalyst loading, and 4:1 LTTM ratio, with expected DMF yield of 25.61 mol% (13.67 mass percent). Experimental validation yielded 21.28 ± 0.77 mol% (11.36 mass percent), indicating that this regression model was accurate. Overall, this study shown that the LTTM and Cu/AC are capable of producing DMF from biomass in one-pot manner.