Nugraha, Muhammad Navi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Purwarupa Sistem Klasifikasi Legalitas Investasi Berbasis Algoritma Bidirectional Long Short Term Memory Nugraha, Muhammad Navi; Arrofiq, Muhammad
Journal of Internet and Software Engineering Vol 5 No 1 (2024): Journal of Internet and Software Engineering
Publisher : Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jise.v5i1.8938

Abstract

Investasi ilegal telah menjadi permasalahan serius di Indonesia, yang mengakibatkan kerugian finansial yang signifikan bagi investor dan perekonomian. Pengecekan legalitas perusahaan investasi secara manual belum efektif dan memakan waktu. Oleh karena itu, penelitian ini memanfaatkan teknologi machine learning dengan metode text classification untuk melakukan prediksi otomatis terhadap pesan investasi. Metode text classification digunakan dalam penelitian ini untuk mengategorikan pesan investasi berbahasa Indonesia dari media sosial, terutama Telegram, menjadi legal atau ilegal. Tujuan penelitian ini adalah merancang purwarupa sistem deteksi legalitas investasi. Dataset yang digunakan diperoleh dari media sosial Telegram, terdiri dari dua varian dengan jumlah 2996 data dan 210 data yang mencakup pesan investasi legal dan ilegal. Proses penelitian meliputi pengumpulan data, preprocessing, pelatihan model klasifikasi, evaluasi, dan pembuatan aplikasi web untuk deteksi pesan investasi. Dalam penelitian ini, dua algoritma, yaitu BiLSTM dan LSTM, diimplementasikan dan dibandingkan. Pengujian dilakukan dengan mempertimbangkan jumlah data dalam dataset, rasio pembagian dataset, penggunaan algoritma BiLSTM dan LSTM, confusion matrix, serta aplikasi web. Hasil pengujian menunjukkan bahwa model klasifikasi teks dengan algoritma BiLSTM dan jumlah data 2996 dengan rasio pembagian 70:30 memberikan performa tertinggi dibandingkan varian lain. Model dengan algoritma BiLSTM tersebut mampu mencapai akurasi sebesar 96%, presisi 98%, dan recall 93%. Aplikasi web berhasil mendeteksi pesan investasi menggunakan model dengan performa tertinggi dan berjalan sesuai dengan rancangan yang telah ditetapkan.