Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Science in Information Technology Letters

Mapping dengue vulnerability: spatial cluster analysis reveals patterns in Central Java, Indonesia Fithriyyah, Anisahtul; Purwaningsih, Tuti; Konate, Siaka; Abdalla, Modawy Adam Ali
Science in Information Technology Letters Vol 4, No 2 (2023): November 2023
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/sitech.v4i2.1203

Abstract

In Indonesia, where the interplay between climate variability and infectious diseases is pronounced, Dengue Fever poses a significant threat, particularly in Central Java, ranking as the province with the third-highest incidence of Dengue cases nationwide. This study adopts a proactive approach, employing cluster analysis techniques—single linkage, average linkage, and Ward’s method—to categorize cities and regencies in Central Java based on their susceptibility to Dengue outbreaks. The comparative analysis, facilitated by standard deviation values, reveals nuanced vulnerability patterns, with the single linkage method presenting the most refined categorization, yielding four distinct vulnerability clusters: very low (0.097), low (0.150), medium (0.205), and high (0.303). Furthermore, spatial analysis utilizing Moran’s Index indicates a positive spatial autocorrelation among Dengue cases (Moran’s I = 0.62, p 0.05), underscoring the spatial homogeneity in case distribution across regions. These findings emphasize the critical need for targeted interventions and evidence-based policymaking to effectively combat Dengue transmission in Central Java and mitigate its public health impact.
Machine learning-based residential load demand forecasting: Evaluating ELM, XGBoost, RF, and SVM for enhanced energy system and sustainability Abdalla, Modawy Adam Ali; Ishaga, Ahmed Mohamed; Osman, Hassan Ahmed; Elhindi, Mohamed; Ibrahim, Nasreldin; Snani, Aissa; Hamid, Gomaa Haroun Ali; Hammad, Abdallah
Science in Information Technology Letters Vol 6, No 1 (2025): May 2025
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/sitech.v6i1.1866

Abstract

Accurate forecasting of electrical power load is essential for properly planning, operating, and integrating energy systems to accommodate renewables and achieve environmental sustainability. Therefore, this study introduces different machine learning (ML) methods, including support vector machines (SVM), random forests (RF), extreme learning machines (ELM), and extreme gradient boosting (XGBoost) to predict hourly electricity demand using electricity consumption and temperature data for train and test ML models. The data is processed by autocorrelation function (ACF) and cross-correlation function (CCF) to determine the appropriate lag time for the inputs. Furthermore, ML model accuracy is assessed using coefficient of determination (R²), mean absolute error (MAE), and root mean square error (RMSE). Results show that the ELM model achieved the highest R² in both summer (0.971) and winter (0.868), outperforming the other models in accuracy R² and error reduction (MAE and RMSE). ELM also more effectively captured load fluctuations. The result of this research has applications for load demand forecasting in the proper planning and operation of the residential grid. The results help estimate load demand and provide useful guidance for residential grid planning and management by determining the best techniques for precisely estimating load demand and identifying domestic energy consumption patterns