Claim Missing Document
Check
Articles

Found 2 Documents
Search

Aplikasi dan Sistem Pemantau Gizi Balita Melalui Berat dan Tinggi Badan Bayi untuk Pelayanan Posyandu Anyelir 1 Surabaya Berbasis Internet of Things Mutiara Sari, Dewi; Izzudin Nadhori, Isbat; Hadiah Muliawati, Tri; Wahyuda, Imam; Fatrian Romadhoni, Achmad; Arissabarno, Cahyo; Adhitama Nugroho, Farrel; Jasmine Azzahra, Soniya; Andhika Ardianto, Arya; Azzahra, Salsabilla; Nur Fadhillah, Wiradika
El-Mujtama: Jurnal Pengabdian Masyarakat Vol 4 No 1 (2024): El-Mujtama: Jurnal Pengabdian Masyarakat
Publisher : Intitut Agama Islam Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/elmujtama.v4i1.3434

Abstract

Based on Ikatan Dokter Anak Indonesia (IDAI), one of the indicators used to monitor the physical growth and development of healthy children is through body weight. It is recommended that in infancy, parents routinely monitor the baby's weight and height. In Indonesia, there is a posyandu program that facilitates regular checking of baby's weight. Currently the monitoring system for baby weight and height at Posyandu Anyelir 1 Surabaya is still done manually, namely weighing babies on traditional scales and manual height, then manually recording them on the Towards Healthy Card (KMS) both in the cadre records and parents of toddlers. This makes monitoring less well recorded, especially if the KMS is lost. So that the PENS Community Service program makes Smart Posyandu Products: Applications and Toddler Nutrition Monitoring Systems Through Baby Weight and Height for Posyandu Services Based on the Internet of Things. By applying the case study method to implementing Smart Posyandu Products at posyandu, Smart Posyandu Products can be accepted by the Posyandu. So that the results of community service activities can help the duties of posyandu cadres and parents of toddlers in monitoring toddler nutrition effectively and efficiently.
Penerapan Algoritma Binning pada Preprocessing Data untuk Meningkatkan Akurasi Klasifikasi Multi-Kelas: Studi Kasus Data SDG Nur Fadhillah, Wiradika; Susetyoko, Ronny; Nadhori, Isbat Uzzin
Jurnal Infomedia: Teknik Informatika, Multimedia, dan Jaringan Vol 10, No 2 (2025): Jurnal Infomedia
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jim.v10i2.7165

Abstract

Klasifikasi data memainkan peran esensial dalam analisis data, terutama untuk data Sustainable Development Goals (SDGs) yang seringkali memiliki karakteristik kompleks seperti nilai hilang dan distribusi tidak seimbang, sehingga memerlukan tahap preprocessing yang efektif. Penelitian ini bertujuan untuk mengevaluasi secara komprehensif efektivitas tiga teknik binning, yaitu Fixed Binning, Random Binning, dan KNN Binning, dalam meningkatkan akurasi klasifikasi multikelas pada data SDGs. Teknik binning ini diimplementasikan dan diuji menggunakan tiga algoritma klasifikasi utama, yaitu Random Forest, Logistic Regression, dan Multilayer Perceptron (MLP). Penelitian ini menggunakan dua dataset yang merepresentasikan data SDGs, yaitu data pembangunan berkelanjutan dan ketahanan pangan. Dataset tersebut adalah dataset UKT dengan 2.137 entri dan dataset Ketahanan pangan dengan 514 entri. KNN Binning dipilih karena kemampuannya mengelompokkan data berdasarkan kedekatan antar instans, adaptif terhadap distribusi data yang kompleks. Hasil penelitian secara konsisten menunjukkan bahwa KNN Binning memberikan peningkatan akurasi tertinggi. Secara spesifik, kombinasi KNN Binning dengan Random Forest menghasilkan akurasi 92.25% pada dataset UKT dan 73.79% pada dataset Ketahanan pangan. Lebih lanjut, kombinasi ini juga menunjukkan peningkatan pada metrik presisi, recall, dan F1 score. Temuan ini menggarisbawahi superioritas KNN Binning dalam menangani data SDGs yang beragam dan tidak merata, sehingga memberikan kontribusi penting bagi pengembangan teknik preprocessing yang lebih akurat, andal, dan dapat meningkatkan performa model klasifikasi secara keseluruhan untuk analisis data SDGs.