Claim Missing Document
Check
Articles

Found 2 Documents
Search

Distance Measurement of Low Reflectance Objects Using Indirect Time of Flight LiDAR Agitta Rianaris; Nofriha Rahmayani Siregar; Hari Pratomo; Surip Kartolo; Syahrul Humaidi; Dwi Hanto
Journal of Technomaterial Physics Vol. 6 No. 2 (2024): Journal of Technomaterial Physics
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32734/jotp.v6i2.16988

Abstract

Remote sensing is a system that enables data collection without physical contact with the object or its environment. Light detection and Ranging (LiDAR) technology is increasingly important in various industries, particularly developing autonomous vehicles. In autonomous vehicle applications, LiDAR is expected to detect multiple objects from high and low reflectance to make it easy to recognize its surrounding area. We have designed a biaxial LiDAR range finder system based on indirect time of flight technology, which has been tested to measure the distance of an object with high reflectance. In this work, we employ the system to measure the distance of an object with low reflectance from High Impact PolySterene (HIPS). The results show that the systems can measure objects from HIPS up to 33 m, which is lower than when the system measures an object with high reflectance.
Sensing Properties of ZnO-SWCNT Hybrid Nanostructure Coated on Flexible Substrate for CO2 Gas Detection Aisyah Nur Estri; Riyani Tri Yulianti; Qonitatul Hidayah; Surip Kartolo; Rike Yudianti
Jurnal Sains Materi Indonesia Vol. 24 No. 1 (2022)
Publisher : BRIN Publishing (Penerbit BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

We report sensing properties of functionalized single walled carbon nanotubes (f-SWCNTs) deposited on the flexible substrate of silicon (Si) and polyethylene tereptaphalate (PET). Deposition of f-SWCNT on Si rubber and PET surface was conducted by applying different manner of spray coating and dip coating techniques, respectively. Surface modification of f-SWCNT by ZnO nanostructure layer were applied by hydrothermal process.The research study were conducted to know the effect of substrate material and ZnO structure on the f-SWCNT surface which embedded in those flexible polymer substrates. The results reveal that f-SWCNT on Si substrate (f-SWCNT/Si) do not have a good response in gas sensing performance. In meanwhile f-SWCNT on PET substrates (f-SWCNT/PET) is more sensitive about 1.6% with 3s in response. ZnO structure layer modifying the surface structure of f-SWCNT enhance the sensitivity and responsiveness of the sensor with sensitivity of 4.1 % in 2s response after CO2 injection. Effect of bending treatment of the sensor and its stability were further investigated. Morphological surface of f-SWCNT network and crystal structure of ZnO and f-SWCNT were also observed by scanning electron microscope (SEM) and X-ray diffraction, respectively