The inclusion of naturalized players in Indonesia's national football team has sparked diverse public reactions, particularly on social media platforms like Twitter. This study aims to compare public opinion toward naturalized and local players through sentiment analysis. A total of 2,342 tweets were categorized into three sentiment classes: positive, neutral, and negative. Naturalized players received a higher number of positive sentiments, totaling 809, compared to 333 negative and 231 neutral sentiments. In contrast, local players gained 465 positive sentiments, 317 negative, and 187 neutral, indicating a generally more favorable perception of naturalized players among the public. Further analysis was conducted using the Support Vector Machine (SVM) classification algorithm along with the SMOTE technique for data balancing, focusing on five key aspects: performance, experience, physical condition, adaptability, and communication. The classification results showed that naturalized players outperformed in physical condition with an accuracy of 96 percent, followed by performance and adaptability, each at 90 percent. On the other hand, local players showed superiority only in communication with an accuracy of 92 percent. In terms of precision and recall, naturalized players again led in physical condition, achieving 97 percent precision and 96 percent recall, while local players excelled in communication with both precision and recall at 92 percent. These findings offer valuable insights for policymakers and football organizations in formulating more effective naturalization strategies.