Claim Missing Document
Check
Articles

Found 4 Documents
Search

Performance Comparison of Random Forest, Support Vector Machine and Neural Network in Health Classification of Stroke Patients Sari, Windy Junita; Melyani, Nasya Amirah; Arrazak, Fadlan; Anahar, Muhammad Asyraf Bin; Addini, Ezza; Al-Sawaff, Zaid Husham; Manickam, Selvakumar
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 2 No. 1: PREDATECS July 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v2i1.1119

Abstract

Stroke is the second most common cause of death globally, making up about 11% of all deaths from health-related deaths each year, the condition varies from mild to severe, with the potential for permanent or temporary damage, caused by non-traumatic cerebral circulatory disorders. This research began with data understanding through the acquisition of a stroke patient health dataset from Kaggle, consisting of 5110 records. The pre-processing stage involved transforming the data to optimize processing, converting numeric attributes to nominal, and preparing training and test data. The focus then shifted to stroke disease classification using Random Forest, Support Vector Machines, and Neural Networks algorithms. Data processing results from the Kaggle dataset showed high performance, with Random Forest achieving 98.58% accuracy, SVM 94.11%, and Neural Network 95.72%. Although SVM has the highest recall (99.41%), while Random Forest and ANN have high but slightly lower recall rates, 98.58% and 95.72% respectively. Model selection depends on the needs of the application, either focusing on precision, recall, or a balance of both. This research contributes to further understanding of stroke diagnosis and introduces new potential for classifying the disease.
Analisis Sentimen Terhadap Pemain Naturalisasi dan Lokal Tim Nasional Sepakbola Indonesia Menggunakan Support Vector Machine Arrazak, Fadlan; Afdal, M; Novita, Rice; Megawati, Megawati
Building of Informatics, Technology and Science (BITS) Vol 7 No 2 (2025): September 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i2.7471

Abstract

The inclusion of naturalized players in Indonesia's national football team has sparked diverse public reactions, particularly on social media platforms like Twitter. This study aims to compare public opinion toward naturalized and local players through sentiment analysis. A total of 2,342 tweets were categorized into three sentiment classes: positive, neutral, and negative. Naturalized players received a higher number of positive sentiments, totaling 809, compared to 333 negative and 231 neutral sentiments. In contrast, local players gained 465 positive sentiments, 317 negative, and 187 neutral, indicating a generally more favorable perception of naturalized players among the public. Further analysis was conducted using the Support Vector Machine (SVM) classification algorithm along with the SMOTE technique for data balancing, focusing on five key aspects: performance, experience, physical condition, adaptability, and communication. The classification results showed that naturalized players outperformed in physical condition with an accuracy of 96 percent, followed by performance and adaptability, each at 90 percent. On the other hand, local players showed superiority only in communication with an accuracy of 92 percent. In terms of precision and recall, naturalized players again led in physical condition, achieving 97 percent precision and 96 percent recall, while local players excelled in communication with both precision and recall at 92 percent. These findings offer valuable insights for policymakers and football organizations in formulating more effective naturalization strategies.
Implementasi Algoritma Decision Tree dan Support Vector Machine (SVM) untuk Prediksi Risiko Stunting pada Keluarga: Implementation of Decision Tree and Support Vector Machine (SVM) Algorithm for Stunting Risk Prediction Putri, Amanda Iksanul; Syarif, Yulia; Jayadi, Puguh; Arrazak, Fadlan; Salisah, Febi Nur
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 3 No. 2 (2023): MALCOM October 2023
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v3i2.1228

Abstract

Kondisi kekurangan gizi kronis yang disebabkan oleh asupan makanan yang tidak mencukupi sebagai akibat dari kebiasaan makan yang tidak tepat sesuai dengan gizi yang diperlukan disebut juga dengan stunting. Stunting dapat membuat fisik anak menjadi lebih pendek, selain itu dapat menghambat pertumbuhan dan perkembangan organ lain seperti ginjal, jantung, dan otak pada anak. Meningkatnya kasus stunting pada anak memerlukan upaya pencegahan secara dini. Pada penelitian ini menggunakan 18 atribut dan 5021 record data dari 10 kelurahan Kota Dumai dimana salah satu diantaranya dijadikan sebagai kelas. Pada penelitian ini menerapkan Algoritma Decision Tree dan Support Vactor Machine (SVM) untuk mengetahui algoritma mana yang tepat memproses data tersebut. Hasil prediksi dengan menggunakan Decision Tree pada penelitian ini mendapatkan nilai akurasi sebesar 96.15%, nilai recall Tidak sebesar  92.06% serta Ya sebesar 97.34% dan nilai presisi Tidak sebesar 90.99% serta Ya sebesar 97.68%. Sedangkan dengan menggunakan Algoritma SVM mendapatkan nilai akurasi sebesar 62.48%, nilai recall Tidak sebesar 99.12% serta Ya sebesar 51.80% dan nilai presisi Tidak sebesar 37.49% serta Ya sebesar 99.51%. Berdasarkan penelitian menggunakan data  tersebut dapat disimpulkan bahwa akurasai algoritma Decision Tree jauh lebih baik dibandingkan dengan algoritma SVM.
RANCANG BANGUN SISTEM INFORMASI PERPUSTKAAN BERBASIS WEBSITE (STUDI KASUS : SMA NEGERI 2 BANGKINANG KOTA) Arrazak, Fadlan; Marsal, Arif
Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi Vol 10, No 2 (2024): Agustus
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/rmsi.v10i2.28558

Abstract

Pada Perpustakaan SMA Negeri 2 Bangkinang Kota ditemukan beberapa kendala dalam pengelolaan data perpustakaan seperti data buku, data peminjaman dan pengembalian buku,serta data rekapan laporan. Untuk mengetahui kendala yang ada penulis melakukan pengumpulan data melalui observasi secara langsung pada bidang perpustakaan serta mewawancarai kepala perpustakaan. Untuk mengatasi permasalahan tersebut maka membangun sistem informasi perpustakaan untuk membantu proses bisnis pada perpustakaan sekolah tersebut. Sebelum membangun sistem informasi maka perlu dilakukannya analisa dan perancangan sistem menggunakan metode Waterfall yang menjadi pedoman dalam membangun sistem informasi perpustakaan SMA Negeri 2 Bangkinang Kota. Dengan adanya sistem informasi perpustakaan ini didapati dapat meningkatkan pelayanan kepada anggota dalam peminjaman, pengembalian buku, dan juga memberikan kemudahan anggota dalam mencari buku.