Claim Missing Document
Check
Articles

Found 3 Documents
Search

QSAR ANALYSIS USING SEMI-EMPIRICAL AM1 METHOD, MOLECULAR DOCKING, AND ADMET STUDIES OF CHALCONE DERIVATIVES AS ANTIMALARIAL COMPOUNDS Kurniawan, Muhammad Akbar S; Baari, Muhamad Jalil; Sariyanti, Sariyanti; Finarisnawati, Finarisnawati
Jurnal Kimia Riset Vol. 8 No. 2 (2023): December
Publisher : Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jkr.v8i2.51798

Abstract

Malaria is a serious caused by protozoan parasites such as Plasmodium groups and has fatal consequences for human health. The increase in the resistance of the Plasmodium parasites toward existing antimalarial drugs prompts the exploration of novel compounds. In this study, quantitative structure-activity relationship (QSAR) analysis using the semi-empirical AM1 method was conducted to identify the optimal model that relates physicochemical properties and biological activity of chalcone derivatives.  In addition, ADMET prediction and molecular docking were also carried out. Multilinear regression calculations for statistical parameters of QSAR models revealed that Model 4, with 11 independent variables, provided the best predictions and exhibited a robust correlation with antimalarial activity represented by inhibitory concentration (IC50). ADMET predictions indicated favorable absorption, distribution, metabolism, excretion, and toxicity properties, particularly for B2D, showing promising antimalarial attributes. Molecular docking studies targeting 5 mutated PfDHODH proteins revealed B2D's potential to reach therapeutic targets efficiently. It has low docking scores for mutations I (-10.5 kcal/mol), II (-8.6 kcal/mol), and V (-10.5 kcal/mol) with RMSD < 2í…, in carrying out its role for antimalarial activity. This research successfully identifies B2D as an efficient inhibitor of PfDHODH receptors. Thus, it is a highly promising novel antimalarial drug.
Studi Teoritis Derivat 4,5-Difenil Imidazol Sebagai Inhibitor Korosi Besi dengan Teori Fungsi Kerapatan (DFT) Baari, Muhamad Jalil; Alif, Alfiah; Kurniawan, Muhammad Akbar S; Finarisnawati, Finarisnawati
Al-Kimia Vol 12 No 1 (2024): JUNE
Publisher : Study Program of Chemistry - Alauddin State Islamic University of Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/al-kimia.v12i1.43475

Abstract

Corrosion is a severe problem in the petroleum industry. The use of corrosion inhibitors is an effort to reduce the corrosion rate on metal materials. This study used the computational chemistry approach to investigate the corrosion inhibition performances of 4,5-diphenyl imidazole and its derivatives with additional substituents, for instance, electron acceptors and electron donors. Geometry optimizations and calculations of molecular frontier orbital energies were conducted using density functional theory (DFT) in the aqueous phase. These frontier orbital energy values were used to determine other reactivity and stability parameters, such as band gap energy, electron affinity, ionization potential, chemical hardness, chemical softness, number of electron transfers, chemical potential, nucleophilicity, electrophilicity, electronegativity, back donation energy, and interaction energy. Electrostatic potential, Mulliken atomic charge, and theoretical inhibition efficiency of 4,5-diphenyl imidazole derivatives were also determined. Generally, the presence of electron donor substituents theoretically increases corrosion inhibitors. The 4,5-diphenyl imidazole with –NH2 substituent is a better derivative than others based on several reactivity and stability parameters due to adding adsorption centers. Therefore, it can increase the performance of 4,5-diphenyl imidazole as a corrosion inhibitor. The adsorption behaviors of 4,5-diphenyl imidazole and its derivatives on Fe(100) surfaces were investigated using molecular dynamics simulation. The binding energies of three types of inhibitors on the Fe surface of studied inhibitors followed the order: D–NH2 > 4,5-diphenyl imidazole (D) > D–NO2. This ranking obtained is consistent with the theoretical inhibition efficiency.
Investigation of Pharmacokinetics, Molecular Docking, and Dynamics of Xanthomicrol-Derived Compounds Against Various Mutated Proteins in Lung Cancer Cells Kurniawan, Muhammad Akbar S; Baari, Muhamad Jalil; Sabila, Laili Cahyani; Amin, Rana Triana
Indonesian Journal of Chemical Research Vol 13 No 1 (2025): Edition for May 2025
Publisher : Jurusan Kimia, Fakultas Sains dan Teknologi, Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/ijcr.2025.13-muh

Abstract

Lung cancer remains one of the leading causes of global mortality, primarily due to drug resistance and the adverse effects of conventional therapies. Therefore, the discovery of novel compounds that are both effective and safe is crucial for the development of alternative treatments. This study employed a computational approach to evaluate the therapeutic potential of Xanthomicrol-derived compounds targeting mutated proteins commonly associated with lung cancer. Four derivatives (u1a, u2a, u3a, and u4a) were assessed using pharmacokinetic (ADMET) predictions, molecular docking, and molecular dynamics simulations against ten mutated lung cancer-related proteins (1nq1, 1x2j, 4b3z, 4j97, 5l2q, 6pwa, 6usx, 7pgk, 7pgl, and 7r7k). ADMET predictions revealed that all compounds had good gastrointestinal absorption, did not cross the blood–brain barrier, and exhibited favourable safety profiles. Among them, compound u3a showed the highest binding affinity toward seven mutated proteins, with docking scores ranging from -5.9 to -9.4 kcal/mol. Molecular dynamics simulations further supported the stability of u3a protein interactions, indicated by low RMSF values and an optimal radius of gyration. These results suggest that u3a is a promising candidate for targeted lung cancer therapy and warrants further experimental validation.