Claim Missing Document
Check
Articles

Found 2 Documents
Search

Surface Modification of Composite Coating for Marine Application: A Short Review Aulia, Hafiz; Riastuti, Rini; Ramdhani, Rizal Tresna
Metalurgi Vol 39, No 1 (2024): Metalurgi Vol. 39 No. 1 2024
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2024.746

Abstract

Corrosion is one of the phenomena that affects the deterioration of materials in offshore applications. Marine corrosion is particularly aggressive, due to the high salt content and low electrical resistivity of seawater. Corrosion cannot be stopped completely, but the reaction can be slowed down. Applying coating is an effective and widely used method to protect metal surfaces from corrosion. Coatings act as a barrier between the metal and its environment, preventing or slowing down the corrosive processes. Pursuant to ISO 12944, the most commonly used generics for coating systems in marine service are alkyd, acrylic, ethyl silicate, epoxy, vinyl ester, polyurethane, polyaspartic, and polysiloxane. The latest innovations in marine coatings still use a layer-by-layer coating method (e.g. primer coats, intermediate coats, and top coats) depending on thickness. Marine structures exposed to the atmospheric zones are usually coated with one or two coats of epoxy. A slightly more costly system of one coat of zinc-rich primer, one coat of epoxy, and one coat of aliphatic polyurethane may provide better performance. Coating systems for the atmospheric zones are frequently used in the intertidal and splash zones. Immersion zones of marine structures are commonly coated with one or two coats of 100% solid epoxy or three coats of solvent-borne epoxy. A single polymer as a generic coating have limitations. Adding fillers is a common method to improve the properties of polymers to become a composite. In marine coatings, fillers are still limited to glass flakes and powder. Poor dispersion and agglomeration might reduce the effectiveness of fillers in the matrix, which decreases the adhesion properties. The fillers must be surface modification before the application. This review provides a comprehensive and critical review of the current research status of composite coatings that serve as candidates to be used in marine coating.
Effect of 2-Methylimidazole Composition as Low-Temperature Application in Phenol-Formaldehyde, Glycidyl Ether Epoxy Coating Paltgor, Rinush Fedrikdo; Riastuti, Rini; Ramdhani, Rizal Tresna; Yunus, Muhammad
Jurnal Sains Materi Indonesia Vol. 25 No. 1 (2023): Jurnal Sains dan Materi Indonesia
Publisher : BRIN Publishing (Penerbit BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jsmi.2023.267

Abstract

The addition of materials to pile pipe at low temperatures is very challenging. Thereby, an optimum operating level is needed to produce a quality coating. Furthermore, 2-methylimidazole (2MI) was added into a phenol-formaldehyde, glycidyl ether polymer fusion bonded epoxy (FBE) coating at different concentrations of 1, 2, and 3 %wt. Thermal analysis was then carried out using differential scanning calorimetry (DSC), where the addition of 2MI decreased the curing temperature to 134.76°C due to the reduced activation energy. Potentiodynamic polarization showed the best corrosion rate of 0.00991 mm/year with a current density of 0.847μA/cm2 after adding 1 %wt 2MI. Electrochemical impedance spectroscopy (EIS) was carried out to determine the charge transfer resistance and maximum coating capacitor capacitance after adding 1 %wt 2MI, namely 9.9 kΩ and 8.45×10-5 F, respectively. The cathodic disbondment test (CD-Test) showed that the disbondment radius of the coating under the influence of the cathodic protection current was 4.32mm. Mechanical analysis by pull-off adhesion test showed a value of 7.28 MPa after the addition of 2MI 2 %wt but decreased to 6.63 MPa at 3 %wt. Therefore, the optimum addition is 1 %wt 2MI for low-temperature applications of 170 –175°C in piles with high coating performance and compliance with predetermined standards.