Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparison Between Algebraic Cryptanalysis on DES and NTRU Paradise, Fadila; Sugeng, Kiki Ariyanti
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 5, No 2 (2023)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v5i2.32011

Abstract

AbstractAlgebraic cryptanalysis is a cryptanalysis method that aims to exploit the algebraic structure of an encryption algorithm to obtain the secret key. Algebraic cryptanalysis becomes interesting because it uses a small amount of known plaintext, which in real life very few known plaintexts are available. Algebraic cryptanalysis has previously been performed on several block cipher algorithms and public key lattice-based algorithms. In this study, DES and NTRU were chosen as the objects of algebraic cryptanalysis. This research aims to compare algebraic cryptanalysis on DES and NTRU in terms of their applicability, and to what extent algebraic cryptanalysis can be successful in obtaining keys.Keywords: Algebraic Cryptanalysis; DES; NTRU; polynomial equation. AbstrakAlgebraic cryptanalysis adalah metode kriptanalisis yang bertujuan untuk memanfaatkan struktur aljabar pada algoritma enkripsi untuk mendapatkan kunci. Algebraic cryptanalysis menarik karena hanya membutuhkan sedikit plaintext, di mana pada kehidupan nyata hanya sedikit plaintext yang bisa didapatkan. Algebraic cryptanalysis sebelumnya dilakukan pada algorima block cipher dan algoritma kunci publik berbasis latis. Pada penelitian ini, DES dan NTRU dipilih sebagai objek algebraic cryptanalysis. Penelitian ini bertujuan untuk membandingkan algebraic cryptanalysis pada DES dan NTRU, serta sejauh mana algebraic cryptanalysis bisa mendapatkan nilai kunci.Kata Kunci: Kriptanalisis aljabar; DES; NTRU; persamaan polinomial. 2020MSC: 94A60.
Pemulihan Kunci pada Simplified Data Encryption Standard (S-DES) Melalui Serangan Aljabar: Studi Kasus Paradise, Fadila; Indarjani, Santi
Info Kripto Vol 19 No 1 (2025)
Publisher : Politeknik Siber dan Sandi Negara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56706/ik.v19i1.114

Abstract

Salah satu metode kriptanalisi adalah serangan aljabar. Makalah ini bertujuan untuk menunjukkan bagaimana serangan aljabar dapat diterapkan pada S-DES sebagai media pembelajaran. Serangan dieksekusi dengan pendekatan sistem persamaan linier. Langkah awal menentukan persamaan polynomial yang merupakan representasi aljabar dari algoritma S-DES, meliputi: penentuan persamaan kunci putaran 1 dan 2, penentuan persamaan polinomial dari s-box S0 dan S1, serta pencarian persamaan polinomial dari setiap bit teks sandi. Proses pemulihan kunci dilakukan menggunakan algoritma Extended Linearization (XL) sebagai metode untuk mencari solusi dari sistem persamaan polinomial yang diperoleh. Dari hasil eksperimen dapat dibuktikan kunci input rahasia berhasil dipulihkan hanya dengan 2 percobaan berdasarkan persamaan polinomial yang diperoleh, dibandingkan 2^10 percobaan jika dilakukan total brute force attack. Penelitian ini bisa menjadi acuan proyeksi keamanan algoritma AES atau yang sejenis dan dapat menjadi referensi penerapan serangan aljabar pada algoritma sejenis.
ALGEBRAIC CRYPTANALYSIS ON NTRU-HPS AND NTRU-HRSS Paradise, Fadila; Sugeng, Kiki Ariyanti
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 4 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss4pp2187-2196

Abstract

NTRU is a lattice-based public-key cryptosystem designed by Hoffstein, Pipher, and Silverman in 1996. NTRU published on Algorithmic Number Theory Symposium (ANTS) in 1998. The ANTS’98 NTRU became the IEEE standard for public key cryptographic techniques based on hard problems over lattices in 2008. NTRU was later redeveloped by NTRU Inc. in 2018 and became one of the finalists in round 3 of the PQC (Post-Quantum Cryptography) standardization process organized by NIST in 2020. There are two types of NTRU algorithms proposed by NTRU Inc., which are classified based on parameter determination, NTRU-HPS (Hoffstein, Pipher, Silverman) and NTRU-HRSS (Hulsing, Rijnveld, Schanck, Schwabe). Algebraic cryptanalysis on ANTS’98 NTRU had previously been carried out in 2009 and 2012. In this paper, algebraic cryptanalysis is performed on NTRU-HPS with q=2048, n=509 (ntruhps2048509) and NTRU-HRSS with n=701 (ntruhrss701). This research aims to evaluate the resistance of NTRU-HPS and NTRU-HRSS algorithms against algebraic cryptanalysis by reconstructing the private key value. As a result, NTRU-HPS and NTRU-HRSS resistance to algebraic cryptanalysis.