Faulina, Naflah
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Generalized Space Time Autoregressive (GSTAR) Model for Air Temperature Forecasting in the South Sumatera, Riau, and Jambi Provinces Aprianti, Ayu; Faulina, Naflah; Usman, Mustofa
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 6, No 1 (2024)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v6i1.36049

Abstract

Over the past few years, there has been a significant increase in air temperatures in regions such as South Sumatera, Riau, and Jambi, posing threats of drought, water resource crises, and erratic weather patterns. In response, developing air temperature forecasting techniques becomes imperative for effective climate change management. This study proposes implementing the Generalized Space Time Autoregressive (GSTAR) model as a practical approach for forecasting air temperatures in these regions using two weighting methods, i.e., inverse distance and normalized cross-correlation weighting. The GSTAR model, an extension of the Space Time Autoregressive (STAR) model, offers enhanced complexity by incorporating specific time and location factors, thereby increasing forecasting flexibility. The result reveals that GSTAR(1,1) with normalized cross-correlation weighting is the most optimal model, with a Root Mean Square Error (RMSE) value of 3.135, indicating high forecasting accuracy. The selection of this model is grounded in the geographical proximity and similarity of environmental characteristics of the three regions. This research contributes novel insights into the underlying mechanisms of air temperature dynamics in neighboring areas, providing a robust foundation for formulating effective policy and mitigation strategies in addressing climate change challenges.Keywords: Air temperatures, Normalized cross-correlation weighting, GSTAR(1,1), Inverse distance weighting. AbstrakDalam beberapa tahun terakhir, suhu udara mengalami peningkatan signifikan di wilayah-wilayah seperti Sumatera Selatan, Riau, dan Jambi, yang mengancam kekeringan, krisis sumber daya air, dan perubahan pola cuaca yang tidak terduga. Menghadapi situasi tersebut, pengembangan teknik peramalan suhu udara diperlukan untuk mengantisipasi dan mengelola dampak ekstrem dari perubahan iklim. Studi ini mengusulkan implementasi model Generalized Space Time Autoregressive (GSTAR) sebagai pendekatan praktis untuk meramalkan suhu udara di wilayah-wilayah tersebut menggunakan dua metode pembobotan yaitu pembobotan invers jarak dan normali korelasi silang. Model GSTAR, sebagai perluasan dari model Space Time Autoregressive (STAR), menawarkan kompleksitas yang lebih baik dengan menggabungkan faktor-faktor waktu dan lokasi tertentu, sehingga meningkatkan fleksibilitas dalam ramalan. Hasil analisis menunjukkan bahwa GSTAR(1,1) dengan pemberian bobot normalisasi korelasi silang merupakan model yang paling optimal, dengan nilai Root Mean Square Error (RMSE) sebesar 3.135, menandakan tingkat akurasi yang tinggi. Pemilihan model ini didasarkan pada kedekatan geografis dan kesamaan karakteristik lingkungan dari ketiga wilayah tersebut. Penelitian ini memberikan wawasan baru dalam mekanisme dinamika suhu udara di wilayah-wilayah yang berdekatan, serta memberikan dasar yang kuat bagi perumusan kebijakan dan strategi mitigasi yang efektif dalam menghadapi tantangan perubahan iklim.Kata Kunci: Bobot invers jarak, Bobot normalisasi korelasi silang, GSTAR(1,1), Suhu udara. 2020MSC: 62P30
Enhancing Tuberculosis Diagnosis: Effective Naive Bayes Classification using SMOTE and Tomek Links for Imbalanced Data Faulina, Naflah; Nisa, Khoirin; Warsono, Warsono
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 6, No 2 (2024)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v6i2.41463

Abstract

Naive Bayes classification, grounded in Bayes' theorem, is a well-established probabilistic and statistical method. However, it often faces challenges when dealing with datasets that have skewed class distributions. A common issue with unbalanced data is that the classifier tends to predict the majority class more accurately, leading to high accuracy for the majority class but low accuracy for the minority class. Resampling techniques such as oversampling, undersampling, or a combination of both can be employed to address this. This research introduces a novel approach to balancing training data using a hybrid method that combines SMOTE (Synthetic Minority Oversampling Technique) and Tomek Links by applying this method to tuberculosis (TB) diagnosis data from Mayjend HM Ryacudu Kotabumi Hospital. We evaluate the Naive Bayes classifier's performance on the original and newly balanced data.  We used 826 patient data for training and 207 for testing out of 1,033. Of the 826 records in the training dataset, 306 patients had a TB diagnosis, whereas 520 patients did not. To achieve a better balance between the majority and minority classes, we oversampled 214 data in the minority class to match the number in the majority class. If necessary, we also reduce 214 data from the majority class. The results demonstrate that this hybrid approach significantly enhances the performance of the Naive Bayes model in terms of data balancing and overall accuracy. Specifically, the hybrid method achieves an average specificity of 96%, sensitivity of 88%, false positive fraction (FPF) of 4%, and false negative fraction (FNF) of 12%. These findings highlight the effectiveness of combining SMOTE and Tomek Links, providing a robust solution for improving classification performance in unbalanced datasets.Keywords: Naive Bayes classification; SMOTE; Tomek Links; SMOTE+Tomek Links; Tuberculosis. AbstrakKlasifikasi Naive Bayes, yang didasarkan pada Teorema Bayes, adalah metode probabilistik dan statistik yang sudah mapan. Namun, metode ini sering menghadapi tantangan ketika berhadapan dengan kumpulan data yang memiliki distribusi kelas yang miring (tidak seimbang). Masalah umum pada data yang tidak seimbang adalah bahwa pengklasifikasi cenderung memprediksi kelas mayoritas dengan lebih akurat, yang mengarah pada akurasi tinggi untuk kelas mayoritas namun menghasilkan akurasi rendah untuk kelas minoritas. Untuk mengatasi masalah ini, teknik resampling seperti oversampling, undersampling, atau kombinasi keduanya dapat digunakan. Penelitian ini memperkenalkan pendekatan baru untuk menyeimbangkan data pelatihan menggunakan metode hibrida yang menggabungkan SMOTE (Synthetic Minority Oversampling Technique) dan Tomek Links. Dengan menerapkan metode ini pada data diagnosis tuberculosis (TB) dari Rumah Sakit Mayjend HM Ryacudu Kotabumi. Kami mengevaluasi kinerja pengklasifikasi Naive Bayes pada data yang tidak seimbang asli dan data yang sudah seimbang. Kami menggunakan 826 data pasien untuk pelatihan dan 207 untuk pengujian dari total 1.033. Dari 826 catatan dalam dataset pelatihan, 306 pasien didiagnosis dengan TB, sedangkan 520 pasien tidak. Untuk mencapai keseimbangan yang lebih baik antara kelas mayoritas dan minoritas, kami melakukan oversampling sebanyak 214 data pada kelas minoritas agar jumlahnya seimbang dengan kelas mayoritas. Selain itu, kami juga mengurangi 214 data dari kelas mayoritas. Hasilnya menunjukkan bahwa pendekatan hibrida ini secara signifikan meningkatkan kinerja model Naive Bayes dalam hal keseimbangan data dan akurasi keseluruhan. Secara spesifik, metode hibrida ini mencapai spesifisitas rata-rata sebesar 96%, sensitivitas sebesar 88%, fraksi positif palsu (FPF) sebesar 4%, dan fraksi negatif palsu (FNF) sebesar 12%. Temuan ini menyoroti efektivitas penggabungan SMOTE dan Tomek Links, serta memberikan solusi yang tangguh untuk meningkatkan kinerja klasifikasi di tengah kumpulan data yang tidak seimbang.Kata Kunci: Klasifikasi Naive Bayes; SMOTE; Tomek Links; SMOTE+Tomek Links; Tuberkulosis. 2020MSC: 68T05, 62R07.
Generalized Space Time Autoregressive (GSTAR) Model for Air Temperature Forecasting in the South Sumatera, Riau, and Jambi Provinces Aprianti, Ayu; Faulina, Naflah; Usman, Mustofa
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol. 6 No. 1 (2024)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v6i1.36049

Abstract

AbstractOver the past few years, there has been a significant increase in air temperatures in regions such as South Sumatera, Riau, and Jambi, posing threats of drought, water resource crises, and erratic weather patterns. In response, developing air temperature forecasting techniques becomes imperative for effective climate change management. This study proposes implementing the Generalized Space Time Autoregressive (GSTAR) model as a practical approach for forecasting air temperatures in these regions using two weighting methods, i.e., inverse distance and normalized cross-correlation weighting. The GSTAR model, an extension of the Space Time Autoregressive (STAR) model, offers enhanced complexity by incorporating specific time and location factors, thereby increasing forecasting flexibility. The result reveals that GSTAR(1,1) with normalized cross-correlation weighting is the most optimal model, with a Root Mean Square Error (RMSE) value of 3.135, indicating high forecasting accuracy. The selection of this model is grounded in the geographical proximity and similarity of environmental characteristics of the three regions. This research contributes novel insights into the underlying mechanisms of air temperature dynamics in neighboring areas, providing a robust foundation for formulating effective policy and mitigation strategies in addressing climate change challenges.Keywords: air temperatures, normalized cross-correlation weighting, GSTAR(1,1), inverse distance weighting. AbstrakDalam beberapa tahun terakhir, suhu udara mengalami peningkatan signifikan di wilayah-wilayah seperti Sumatera Selatan, Riau, dan Jambi, yang mengancam kekeringan, krisis sumber daya air, dan perubahan pola cuaca yang tidak terduga. Menghadapi situasi tersebut, pengembangan teknik peramalan suhu udara diperlukan untuk mengantisipasi dan mengelola dampak ekstrem dari perubahan iklim. Studi ini mengusulkan implementasi model Generalized Space Time Autoregressive (GSTAR) sebagai pendekatan praktis untuk meramalkan suhu udara di wilayah-wilayah tersebut menggunakan dua metode pembobotan yaitu pembobotan invers jarak dan normali korelasi silang. Model GSTAR, sebagai perluasan dari model Space Time Autoregressive (STAR), menawarkan kompleksitas yang lebih baik dengan menggabungkan faktor-faktor waktu dan lokasi tertentu, sehingga meningkatkan fleksibilitas dalam ramalan. Hasil analisis menunjukkan bahwa GSTAR(1,1) dengan pemberian bobot normalisasi korelasi silang merupakan model yang paling optimal, dengan nilai Root Mean Square Error (RMSE) sebesar 3.135, menandakan tingkat akurasi yang tinggi. Pemilihan model ini didasarkan pada kedekatan geografis dan kesamaan karakteristik lingkungan dari ketiga wilayah tersebut. Penelitian ini memberikan wawasan baru dalam mekanisme dinamika suhu udara di wilayah-wilayah yang berdekatan, serta memberikan dasar yang kuat bagi perumusan kebijakan dan strategi mitigasi yang efektif dalam menghadapi tantangan perubahan iklim.Kata Kunci: bobot invers jarak, bobot normalisasi korelasi silang, GSTAR(1,1), suhu udara.2020MSC: 62P30
Enhancing Tuberculosis Diagnosis: Effective Naive Bayes Classification using SMOTE and Tomek Links for Imbalanced Data Faulina, Naflah; Nisa, Khoirin; Warsono, Warsono
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol. 6 No. 2 (2024)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v6i2.41463

Abstract

Naive Bayes classification, grounded in Bayes' theorem, is a well-established probabilistic and statistical method. However, it often faces challenges when dealing with datasets that have skewed class distributions. A common issue with unbalanced data is that the classifier tends to predict the majority class more accurately, leading to high accuracy for the majority class but low accuracy for the minority class. Resampling techniques such as oversampling, undersampling, or a combination of both can be employed to address this. This research introduces a novel approach to balancing training data using a hybrid method that combines SMOTE (Synthetic Minority Oversampling Technique) and Tomek Links by applying this method to tuberculosis (TB) diagnosis data from Mayjend HM Ryacudu Kotabumi Hospital. We evaluate the Naive Bayes classifier's performance on the original and newly balanced data.  We used 826 patient data for training and 207 for testing out of 1,033. Of the 826 records in the training dataset, 306 patients had a TB diagnosis, whereas 520 patients did not. To achieve a better balance between the majority and minority classes, we oversampled 214 data in the minority class to match the number in the majority class. If necessary, we also reduce 214 data from the majority class. The results demonstrate that this hybrid approach significantly enhances the performance of the Naive Bayes model in terms of data balancing and overall accuracy. Specifically, the hybrid method achieves an average specificity of 96%, sensitivity of 88%, false positive fraction (FPF) of 4%, and false negative fraction (FNF) of 12%. These findings highlight the effectiveness of combining SMOTE and Tomek Links, providing a robust solution for improving classification performance in unbalanced datasets.Keywords: Naive Bayes classification; SMOTE; Tomek Links; SMOTE+Tomek Links; tuberculosis. AbstrakKlasifikasi Naive Bayes, yang didasarkan pada Teorema Bayes, adalah metode probabilistik dan statistik yang sudah mapan. Namun, metode ini sering menghadapi tantangan ketika berhadapan dengan kumpulan data yang memiliki distribusi kelas yang miring (tidak seimbang). Masalah umum pada data yang tidak seimbang adalah bahwa pengklasifikasi cenderung memprediksi kelas mayoritas dengan lebih akurat, yang mengarah pada akurasi tinggi untuk kelas mayoritas namun menghasilkan akurasi rendah untuk kelas minoritas. Untuk mengatasi masalah ini, teknik resampling seperti oversampling, undersampling, atau kombinasi keduanya dapat digunakan. Penelitian ini memperkenalkan pendekatan baru untuk menyeimbangkan data pelatihan menggunakan metode hibrida yang menggabungkan SMOTE (Synthetic Minority Oversampling Technique) dan Tomek Links. Dengan menerapkan metode ini pada data diagnosis tuberculosis (TB) dari Rumah Sakit Mayjend HM Ryacudu Kotabumi. Kami mengevaluasi kinerja pengklasifikasi Naive Bayes pada data yang tidak seimbang asli dan data yang sudah seimbang. Kami menggunakan 826 data pasien untuk pelatihan dan 207 untuk pengujian dari total 1.033. Dari 826 catatan dalam dataset pelatihan, 306 pasien didiagnosis dengan TB, sedangkan 520 pasien tidak. Untuk mencapai keseimbangan yang lebih baik antara kelas mayoritas dan minoritas, kami melakukan oversampling sebanyak 214 data pada kelas minoritas agar jumlahnya seimbang dengan kelas mayoritas. Selain itu, kami juga mengurangi 214 data dari kelas mayoritas. Hasilnya menunjukkan bahwa pendekatan hibrida ini secara signifikan meningkatkan kinerja model Naive Bayes dalam hal keseimbangan data dan akurasi keseluruhan. Secara spesifik, metode hibrida ini mencapai spesifisitas rata-rata sebesar 96%, sensitivitas sebesar 88%, fraksi positif palsu (FPF) sebesar 4%, dan fraksi negatif palsu (FNF) sebesar 12%. Temuan ini menyoroti efektivitas penggabungan SMOTE dan Tomek Links, serta memberikan solusi yang tangguh untuk meningkatkan kinerja klasifikasi di tengah kumpulan data yang tidak seimbang.Kata Kunci: klasifikasi Naive Bayes; SMOTE; Tomek Links; SMOTE+Tomek Links; tuberkulosis. 2020MSC: 68T05, 62R07.