Claim Missing Document
Check
Articles

Found 3 Documents
Search

VARIASI PANJANG PEMASANGAN FRP PADA BALOK HAUNCH GEOPOLIMER Zulfahmi, Rifqi Iqbal; Qomaruddin, Mochammad; Prasetya, Blinka Hernawan; Purwanto, Purwanto; Tudjono, Sri; Victor, Victor
Jurnal Ilmiah Arsitektur Vol 14 No 2 (2024): Desember
Publisher : Jurusan Arsitektur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32699/jiars.v14i2.8523

Abstract

Penelitian ini mengkaji pengaruh variasi panjang pemasangan Fiber Reinforced Polymer (FRP) pada balok haunch berbahan geopolimer yang digunakan untuk memperkuat balok komposit beton. Penelitian dilakukan melalui simulasi menggunakan software DIANA 10.5 untuk analisis elemen hingga (FEA). Benda uji memiliki panjang total 3,8 meter, jarak tumpuan 3,4 meter, dimensi balok 340 x 170 mm, dan dimensi kolom 300 x 250 mm. Balok haunch dilengkapi tulangan longitudinal D13 dan sengkang 8D-50. Metode eksperimen mencakup sistem pembebanan sesuai standar, penempatan instrumen presisi, serta pencatatan data selama pengujian. Simulasi menggunakan string CFRP dalam FEA menunjukkan bahwa panjang FRP memengaruhi beban-deformasi, pola retak, dan daktilitas balok haunch. Grafik hubungan panjang FRP dan beban ultimate memberikan wawasan penting untuk optimasi perkuatan, sehingga berkontribusi pada pengembangan metode perkuatan struktur yang lebih efisien dan berkelanjutan.
VARIASI PANJANG PEMASANGAN FRP PADA BALOK HAUNCH GEOPOLIMER Zulfahmi, Rifqi Iqbal; Qomaruddin, Mochammad; Prasetya, Blinka Hernawan; Purwanto, Purwanto; Tudjono, Sri; Victor, Victor
Jurnal Ilmiah Arsitektur Vol 14 No 2 (2024): Desember
Publisher : Jurusan Arsitektur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32699/jiars.v14i2.8523

Abstract

Penelitian ini mengkaji pengaruh variasi panjang pemasangan Fiber Reinforced Polymer (FRP) pada balok haunch berbahan geopolimer yang digunakan untuk memperkuat balok komposit beton. Penelitian dilakukan melalui simulasi menggunakan software DIANA 10.5 untuk analisis elemen hingga (FEA). Benda uji memiliki panjang total 3,8 meter, jarak tumpuan 3,4 meter, dimensi balok 340 x 170 mm, dan dimensi kolom 300 x 250 mm. Balok haunch dilengkapi tulangan longitudinal D13 dan sengkang 8D-50. Metode eksperimen mencakup sistem pembebanan sesuai standar, penempatan instrumen presisi, serta pencatatan data selama pengujian. Simulasi menggunakan string CFRP dalam FEA menunjukkan bahwa panjang FRP memengaruhi beban-deformasi, pola retak, dan daktilitas balok haunch. Grafik hubungan panjang FRP dan beban ultimate memberikan wawasan penting untuk optimasi perkuatan, sehingga berkontribusi pada pengembangan metode perkuatan struktur yang lebih efisien dan berkelanjutan.
Experimental investigation of PWHT and normalizing effects on SMAW low-carbon steel joint properties Manik, Parlindungan; Firdhaus, Ahmad; Prasetya, Blinka Hernawan; Prayoga, Rhizky
SINERGI Vol 30, No 1 (2026)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2026.1.009

Abstract

The influence of post-weld heat treatment (PWHT) followed by normalizing on the mechanical properties of AH36 low-carbon steel is significant, particularly in the context of marine applications, such as shipbuilding welded joints. According to the extant literature, PWHT has been demonstrated to reduce residual stresses and enhance microstructural uniformity. However, the suitable PWHT temperatures for AH36 steel welds to balance strength, ductility, and toughness prior to normalizing remain underexplored. The objective of this study is to ascertain the suitable PWHT temperatures prior to normalizing, with the aim of improving weld performance in marine environments. A parametric study was conducted on AH36 steel specimens welded using shielded metal arc welding. The specimens were subjected to PWHT at 0°C (as-welded), 450°C, 600°C, and 750°C, followed by normalizing. Tensile, bending, and Charpy impact tests were utilized to assess the mechanical properties against established maritime safety standards. The results show that 600°C is the optimal PWHT temperature, effectively reducing residual stresses and promoting microstructural homogeneity. This, in turn, ensures that welds meet safety standards while preserving mechanical integrity. Higher temperatures increased the risk of brittleness, while lower temperatures provided insufficient stress relief. This study demonstrates that precise selection of PWHT temperature prior to normalizing is critical for ensuring reliable welds in marine structures. It identifies the optimal condition that maximizes strength, ductility, and impact toughness of AH36 steel while satisfying the Indonesian Classification Bureau (BKI) maritime safety standards.