Cendani, Linggar Maretva
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Metode Ensemble Learning pada Klasifikasi Penyakit Diabetes Cendani, Linggar Maretva; Wibowo, Adi
Jurnal Masyarakat Informatika Vol 13, No 1 (2022): JURNAL MASYARAKAT INFORMATIKA
Publisher : Department of Informatics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jmasif.13.1.42912

Abstract

Diabetes merupakan salah satu penyakit dalam dunia medis yang ditandai dengan kadar gula dalam darah yang tinggi pada penderitanya. Menurut data dari Organisasi Kesehatan Dunia (WHO), pada rentang tahun 1980 sampai 2014, terjadi peningkatan kasus penderita diabetes dari 108 juta menjadi 422 juta. Ensemble Learning yang merupakan salah satu metode dalam Machine Learning dapat digunakan untuk melakukan klasifikasi penyakit diabetes. Pada penelitian ini, dilakukan perbandingan 3 metode Ensemble Learning, yaitu Bagging, Boosting, dan Stacking pada 3 buah dataset. 3 dataset yang digunakan adalah Pima Indians Diabetes, Frankfurt Hospital Diabetes, dan Sylhet Hospital Diabetes. Dari hasil eksperimen ensemble learning yang dilakukan pada ketiga buah dataset, didapatkan bahwa metode Boosting dapat mengungguli metode Bagging dan Stacking. Pada dataset 1, didapatkan akurasi tertinggi sebesar 81.82 % dengan model Gradient Boosting, Extreme Gradient Boosting, dan Cat Boosting. Pada dataset 2, didapatkan akurasi tertinggi sebesar 99.25 % dengan menggunakan model Light Gradient Boosting. Sedangkan akurasi tertinggi pada dataset ketiga adalah 100% dengan menggunakan model Light Gradient Boosting dan Cat BoostingDiabetes merupakan salah satu penyakit dalam dunia medis yang ditandai dengan kadar gula dalam darah yang tinggi pada penderitanya. Menurut data dari Organisasi Kesehatan Dunia (WHO), pada rentang tahun 1980 sampai 2014, terjadi peningkatan kasus penderita diabetes dari 108 juta menjadi 422 juta. Ensemble Learning yang merupakan salah satu metode dalam Machine Learning dapat digunakan untuk melakukan klasifikasi penyakit diabetes. Pada penelitian ini, dilakukan perbandingan 3 metode Ensemble Learning, yaitu Bagging, Boosting, dan Stacking pada 3 buah dataset. 3 dataset yang digunakan adalah Pima Indians Diabetes, Frankfurt Hospital Diabetes, dan Sylhet Hospital Diabetes. Dari hasil eksperimen ensemble learning yang dilakukan pada ketiga buah dataset, didapatkan bahwa metode Boosting dapat mengungguli metode Bagging dan Stacking. Pada dataset 1, didapatkan akurasi tertinggi sebesar 81.82 % dengan model Gradient Boosting, Extreme Gradient Boosting, dan Cat Boosting. Pada dataset 2, didapatkan akurasi tertinggi sebesar 99.25 % dengan menggunakan model Light Gradient Boosting. Sedangkan akurasi tertinggi pada dataset ketiga adalah 100% dengan menggunakan model Light Gradient Boosting dan Cat Boosting.