This Author published in this journals
All Journal Jurnal INFOTEL
Binti Basir, Nurlida
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Image Segmentation Performance using Deeplabv3+ with Resnet-50 on Autism Facial Classification Melinda, Melinda; Aqif, Hurriyatul; Junidar, Junidar; Oktiana, Maulisa; Binti Basir, Nurlida; Afdhal, Afdhal; Zainal, Zulfan
JURNAL INFOTEL Vol 16 No 2 (2024): May 2024
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v16i2.1144

Abstract

In recent years, significant advancements in facial recognition technology have been marked by the prominent use of convolutional neural networks (CNN), particularly in identification applications. This study introduces a novel approach to face recognition by employing ResNet-50 in conjunction with the DeepLabV3 segmentation method. The primary focus of this research lies in the thorough analysis of ResNet-50's performance both without and with the integration of DeepLabV3+ segmentation, specifically in the context of datasets comprising faces of children on the autism spectrum (ASD). The utilization of DeepLabV3+ serves a dual purpose: firstly, to mitigate noise within the datasets, and secondly, to eliminate unnecessary features, ultimately enhancing overall accuracy. Initial results obtained from datasets without segmentation demonstrate a commendable accuracy of 83.7%. However, the integration of DeepLabV3+ yields a substantial improvement, with accuracy soaring to 85.9%. The success of DeepLabV3+ in effectively segmenting and reducing noise within the dataset underscores its pivotal role in refining facial recognition accuracy. In essence, this study underscores the pivotal role of DeepLabV3+ in the realm of facial recognition, showcasing its efficacy in reducing noise and eliminating extraneous features from datasets. The tangible outcome of increased accuracy of 85.9% post-segmentation lends credence to the assertion that DeepLabV3+ significantly contributes to refining the precision of facial recognition systems, particularly when dealing with datasets featuring faces of children on the autism spectrum.