Claim Missing Document
Check
Articles

Found 3 Documents
Search

Development of a Portable Spirometer with MPX5500DP Air Pressure Sensor and Atmega328 Microcontroller Juliandri, Dona; Erliwati, Erliwati; Yudithia, Frenzi Agres; Febrian, Fikri
JATAED: Journal of Appropriate Technology for Agriculture, Environment, and Development Vol. 1 No. 2 (2024): JATAED: Journal of Appropriate Technology for Agriculture, Environment, and Dev
Publisher : LEMBAGA KAJIAN PEMBANGUNAN PERTANIAN DAN LINGKUNGAN (LKPPL)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62671/jataed.v1i2.48

Abstract

This study presents the development of a groundbreaking portable spirometer designed to improve respiratory health monitoring by addressing the limitations of traditional, bulky spirometers that are confined to clinical settings. The device leverages the MPX5500DP air pressure sensor and the Atmega328 microcontroller to deliver accurate and sensitive measurements of air pressure changes, which are crucial for assessing lung volume and airflow. The integration of these components enables the spirometer to convert air pressure variations into electrical signals. These signals are processed by the microcontroller and displayed on an LCD screen, providing users with clear and precise lung function data. Rigorous testing and calibration of the spirometer have validated its performance, showing an overall accuracy of 94% for voltage measurements. Functional testing further confirms the device's precision, achieving an impressive 99.14% accuracy for inspiration capacity and 85.51% for expiration capacity. These results underscore the device’s reliability and effectiveness as a significant advancement in respiratory health technology. Its portable and user-friendly design makes it a practical tool for both personal health monitoring and clinical applications. By enhancing the accessibility and ease of respiratory assessments, this spirometer has the potential to improve everyday health management and clinical evaluations, thus representing a substantial leap forward in the field of respiratory health technology.
Optimasi Penentuan Paket Hemat Menggunakan Algoritma FP-Growth untuk Meningkatkan Strategi Pemasaran Febrian, Fikri; Fatah, Zaehol
JUSIFOR : Jurnal Sistem Informasi dan Informatika Vol 3 No 2 (2024): JUSIFOR - Desember 2024
Publisher : Fakultas Sains Dan Teknologi, Universitas Raden Rahmat Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/jusifor.v3i2.5818

Abstract

Penentuan paket hemat yang efektif merupakan salah satu cara strategis yang digunakan oleh hampir setiap usaha baik UMKM ataupun perusahaan sebagai strategi meningkatkan pemasaran dan menarik lebih banyak konsumen. Namun, untuk menentukan kombinasi produk yang tepat dalam sebuah paket, sering kali ada kekeliruan karena harus sesuai dengan prefensi dan pola belanja dari masing-masing konsumen. Data mining dapat membantu sebuah perusahaan dalam meningkatkan strategi pemasaran. Untuk membantu mengoptimalkan proses penentuan paket hemat digunakan algortima FP-Growth. Algoritma FP-Growth dikenal mampu menemukan pola asosiasi yang tersembunyi dalam sebuah data transaksi. Penggunaan algoritma FP-Grwoth dalam mengidentifikasi kombinasi kesamaan barang yang dibeli oleh pelanggan. Sehingga pemilik usaha dapat memilih atau menentukan paket hemat lebih relevan dan sesuai dengan prefensi konsumen. Hasil yang diperoleh menunjukkan bahwa penggunaan algoritma FP-Growth mampu meningkatkan efisiensi dalam menentukan paket hemat sekaligus meningkatkan strategi pemasaran. Implementasi dalam metode ini berpotensi besar meningkatkan kepuasan konsumen dan memberikan dampak positif terhadap pertumbuhan penjualan Perusahaan secara keseluruhan.
Comparative Study of Naïve Bayes Classifier and Support Vector Machine Methods in Public Sentiment Analysis of Prabowo-Gibran's Free Lunch Program Febrian, Fikri; Fatah, Zaehol; Baijuri, Achmad
G-Tech: Jurnal Teknologi Terapan Vol 9 No 3 (2025): G-Tech, Vol. 9 No. 3 July 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/g-tech.v9i3.7248

Abstract

In today's digital era, social media has become the main platform for people to voice their opinions on social and political issues. One of the most discussed topics is the free lunch program of President-elect Prabowo Subianto and Vice President-elect Gibran Rakabuming Raka. The program triggered various public reactions, making it relevant for sentiment analysis. The purpose of this study is to compare the performance of two text classification algorithms-Naïve Bayes and Support Vector Machine (SVM)-in classifying public sentiment towards the program. The dataset was obtained from Kaggle, with 657 initial data. After preprocessing, 156 data remained, consisting of 127 negative sentiments and 31 positive sentiments. Data processing followed the CRISP-DM framework, with Python and Scikit-learn used in model training. The results showed that the naive bayes classifier performed better with 84.38% accuracy, 86.90% precision, and 84.38% recall. Support Vector Machine showed lower performance in all metrics. In addition, the Naive Bayes Classifier was able to classify sentiments in a more balanced manner. The analysis was performed using Jupyter Notebook, and the final model was implemented through a Streamlit-based web interface.