Mardianto, Ricky
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pendekatan Metode Ensemble Learning untuk Deteksi Serangan DDoS menggunakan Soft Voting Classifier Joses, Steven; Quinevera, Stefanie; Mardianto, Ricky; Yulvida, Donata; Shiddiqi, Ary Mazharuddin
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 10, No 1 (2024): Volume 10 No 1
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v10i1.73241

Abstract

Serangan Distributed Denial of Service (DDoS) adalah jenis serangan yang kompleks dan sering melibatkan berbagai pola lalu lintas jaringan yang berbeda. Model soft voting classifier dapat menggabungkan hasil dari beberapa model klasifikasi yang berbeda, sehingga meningkatkan kemampuan untuk mendeteksi dan mengatasi serangan DDoS dengan berbagai pola dan skenario yang berbeda. Dengan memanfaatkan model soft voting classifier berdasarkan fitur-fitur yang mendukung, dapat meningkatkan ketahanan sistem terhadap serangan DDoS dengan lebih efektif, mengurangi dampaknya, dan memastikan ketersediaan sumber daya jaringan dan layanan internet bagi pengguna yang mengaksesnya. Data yang digunakan dalam penelitian ini menggunakan dataset DDoS yang diperoleh dari situs kaggle.com. Dataset ini memiliki 23 atribut termasuk satu variabel output dengan jumlah data sebanyak 104.245 record. Dilakukan preprocessing pada dataset kemudian diklasifikasi menggunakan lima model machine learning dan sepuluh ensemble learning method untuk mendapatkan hasil akurasi tertinggi. Hasil pengujian menunjukkan bahwa ensemble method sangat optimal dalam mendeteksi serangan DDoS baik menggunakan fitur berdasarkan Information Gain maupun menggunakan fitur berdasarkan Gain Ratio dibandingkan dengan metode machine learning tunggal.
Perbandingan Metode Random Forest, Convolutional Neural Network, dan Support Vector Machine Untuk Klasifikasi Jenis Mangga Mardianto, Ricky; Stefanie Quinevera; Rochimah, Siti
Journal of Applied Computer Science and Technology Vol 5 No 1 (2024): Juni 2024
Publisher : Indonesian Society of Applied Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52158/jacost.v5i1.742

Abstract

Mango is a fruit known as the "King of Fruit" due to its rich flavor, vast variability, and high nutritional value. Classifying mangoes based on their external appearance is the initial step in the process of identifying and categorizing mango types conventionally. The classification process can be performed by examining external features such as fruit color, shape, and size. Classifying different types of mango fruits accurately can assist researchers in developing superior varieties and also aid farmers for cultivation purposes, sales, distribution, and selecting the right varieties for local growth and weather conditions. This research conducts the classification of mango types based on color from mango images using machine learning. The study compares three methods, namely Random Forest, Support Vector Machine (SVM), and Convolutional Neural Network (CNN), to determine the best method for classifying mango types based on their images. The dataset underwent preprocessing, where image sizes were standardized to 300 x 300 pixels, and color was changed to grayscale. The dataset was then divided into training and testing data with a ratio of 70:30. Subsequently, the dataset was processed using three methods, and their accuracy results were compared. The findings indicate that the Random Forest method yielded the highest accuracy compared to the other methods, with an accuracy rate of 96%. The accuracy of the SVM method was 95%, and the accuracy of the CNN method was 33%. From these results, it can be concluded that the Random Forest method is highly effective for classifying mango types based on their image compared to SVM and CNN methods.