Purnama, Muhammad Adji
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Performa Algoritma Random Forest dan Gradient Boosting dalam Mengklasifikasi Churn Telco Purnama, Muhammad Adji; Ramadhani, Jilang; Anugraha, Yoga Safitra; Efrizoni, Lusiana; Rahmaddeni, Rahmaddeni
Techno.Com Vol. 23 No. 3 (2024): Agustus 2024
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v23i3.11278

Abstract

Customer churn adalah kecenderungan pelanggan berhenti dan berpindah layanan dalam periode tertentu. Ini merupakan masalah utama dalam industri telekomunikasi karena mempengaruhi keuntungan perusahaan. Mempertahankan pelanggan lebih mudah dibandingkan mendapatkan pelanggan baru. Memprediksi churn membantu sektor CRM dalam merancang strategi retensi. Tingkat churn yang tinggi dapat menurunkan pendapatan dan mengganggu stabilitas bisnis. Berdasarkan studi, tingkat churn tahunan di industri telekomunikasi berkisar antara 15% hingga 30%. Data mining, yang memanfaatkan teknik pembelajaran mesin, digunakan untuk menganalisis dan mengekstraksi pengetahuan dari data. Penelitian ini bertujuan untuk membandingkan performa dua algoritma yaitu Random Forest dan Gradient Boosting. Hasil yang didapatkan menggunakan splitting data 80:20 menunjukkan bahwa klasifikasi lebih unggul menggunakan metode Gradient Boosting dibandingkan metode Random Forest dilihat dari tingkat akurasi dan nilai ROC AUC. Metode Gradient Boosting mendapatkan nilai akurasi dan ROC AUC sebesar 83% dan 0.89, Sedangkan metode Random Forest mampu menghasilkan nilai akurasi dan ROC AUC sebesar 81% dan 0.87.   Kata kunci: Churn, Gradient Boosting, Klasifikasi, Random Forest, Telco