Anugraha, Yoga Safitra
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Perbandingan Performa Algoritma Random Forest dan Gradient Boosting dalam Mengklasifikasi Churn Telco Purnama, Muhammad Adji; Ramadhani, Jilang; Anugraha, Yoga Safitra; Efrizoni, Lusiana; Rahmaddeni, Rahmaddeni
Techno.Com Vol. 23 No. 3 (2024): Agustus 2024
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v23i3.11278

Abstract

Customer churn adalah kecenderungan pelanggan berhenti dan berpindah layanan dalam periode tertentu. Ini merupakan masalah utama dalam industri telekomunikasi karena mempengaruhi keuntungan perusahaan. Mempertahankan pelanggan lebih mudah dibandingkan mendapatkan pelanggan baru. Memprediksi churn membantu sektor CRM dalam merancang strategi retensi. Tingkat churn yang tinggi dapat menurunkan pendapatan dan mengganggu stabilitas bisnis. Berdasarkan studi, tingkat churn tahunan di industri telekomunikasi berkisar antara 15% hingga 30%. Data mining, yang memanfaatkan teknik pembelajaran mesin, digunakan untuk menganalisis dan mengekstraksi pengetahuan dari data. Penelitian ini bertujuan untuk membandingkan performa dua algoritma yaitu Random Forest dan Gradient Boosting. Hasil yang didapatkan menggunakan splitting data 80:20 menunjukkan bahwa klasifikasi lebih unggul menggunakan metode Gradient Boosting dibandingkan metode Random Forest dilihat dari tingkat akurasi dan nilai ROC AUC. Metode Gradient Boosting mendapatkan nilai akurasi dan ROC AUC sebesar 83% dan 0.89, Sedangkan metode Random Forest mampu menghasilkan nilai akurasi dan ROC AUC sebesar 81% dan 0.87.   Kata kunci: Churn, Gradient Boosting, Klasifikasi, Random Forest, Telco    
PERBANDINGAN ALGORITMA K-MEANS CLUSTERING DAN K-MEDOIDS DALAM MENGELOMPOKKAN TINGKAT KEMISKINAN DI PROVINSI RIAU Ramadhani, Jilang; Anugraha, Yoga Safitra; Fauzan, Aulia; Rahmaddeni, Rahmaddeni; Efrizoni, Lusiana
JSR : Jaringan Sistem Informasi Robotik Vol 8, No 1 (2024): JSR: Jaringan Sistem Informasi Robotik
Publisher : AMIK Mitra Gama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58486/jsr.v8i1.393

Abstract

Kemiskinan merupakan permasalahan yang sering terjadi di dunia. Tingkat kemiskinan dari tahun ke tahun cenderung naik dan turun di setiap wilayah. Menurut Badan Pusat Statistik Riau, tingkat kemiskinan termasuk golongan rendah dengan persentase sebesar 7,00% pada september 2021. Penelitian ini bertujuan untuk mengelompokkan tingkat kemiskinan dengan Cluster kemiskinan rendah, sedang dan tinggi menggunakan algoritma K-Means Clustering dan K-Medoids. Data bersumber dari Badan Pusat Statistik Provinsi Riau dari tahun 2021-2023 dengan atribut jumlah penduduk miskin, pengangguran, dan garis kemiskinan. Hasil penelitian menunjukkan bahwa K-Means menghasilkan nilai Silhouette Coefficient sebesar 0,387 lebih tinggi dibandingkan K-Medoids sebesar 0,289. Hal ini menunjukkan Cluster yang dihasilkan K-Means lebih baik dalam mengelompokkan wilayah berdasarkan tingkat kemiskinan. Informasi ini dapat dimanfaatkan pemerintah untuk mengatasi kemiskinan yang sesuai dengan kondisi khusus di setiap Cluster wilayah.