Prawira, I Made Karang Satria
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparison of Deep Learning Methods for Detecting Tuberculosis Through Chest X-Rays Udayana, I Putu Agus Eka Darma; Indrawan, I Gusti Agung; Prawira, I Made Karang Satria
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4345

Abstract

Chronic diseases are the leading cause of death worldwide, accounting for 73% of deaths in 2020. Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, is one of these diseases and has a significant impact on countries with a high TB burden due to a lack of radiologists and medical equipment. Early diagnosis of TB is crucial but challenging because of its similarity to lung cancer and the shortage of radiologists. A semi-automatic TB detection system is needed to support medical diagnosis and improve public health services. Deep learning technology, such as Convolutional Neural Networks (CNN), offers an effective solution for disease diagnosis with high accuracy. This study compares deep learning methods using an 8-layer CNN and VGG-19, both enhanced with Histogram Equalization (HE) for improved image quality. The study utilizes chest X-ray images of normal lungs and TB-affected lungs from Kaggle. Model performance is evaluated using accuracy, precision, recall, and F1-score metrics. Results indicate that the VGG-19 model outperforms the 8-layer CNN across all evaluation metrics, achieving an accuracy of 72.00% compared to 65.00% for the 8-layer CNN. VGG-19 also demonstrates better precision, recall, and F1-score, making it a more suitable choice for TB detection with enhanced image quality.
Comparison of Artificial Intelligence Methods for Tuberculosis Detection Using X-Ray Images Udayana, I Putu Agus Eka Darma; Prawira, I Made Karang Satria; Tika, I Gede Bagus Arya Merta
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 19, No 1 (2025): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.102601

Abstract

Penyakit tuberkulosis (TB), yang disebabkan oleh bakteri Mycobacterium tuberculosis, merupakan penyakit menular yang sangat berbahaya. Di Indonesia, TB adalah penyakit menular paling mematikan setelah COVID-19 dan menempati urutan ke-13 sebagai penyebab kematian global. Deteksi dini TB sangat penting untuk meningkatkan peluang kesembuhan, namun keterbatasan jumlah ahli radiologi menjadi tantangan utama. Teknologi deep learning, khususnya Convolutional Neural Network (CNN), mejadi solusi efektif untuk masalah ini. Oleh karena itu, pada penelitian ini akan membandingkan dua arsitektur CNN, yaitu AlexNet dan VGG-19, dalam mendeteksi TB pada citra rontgen paru-paru, dengan penerapan metode perbaikan kualitas citra, seperti Histogram Equalization (HE), Adaptive Histogram Equalization (AHE), Contrast Limited Adaptive Histogram Equalization (CLAHE), dan Gamma Correction. Dataset yang digunakan diperoleh dari Kaggle dan mencakup citra rontgen paru-paru normal serta TB. Evaluasi performa dilakukan berdasarkan akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa VGG-19 dengan CLAHE memberikan performa terbaik dengan akurasi 93.5%, presisi 98.88%, recall 88%, dan F1-score 93.12%. VGG-19 dengan Gamma Correction juga menunjukkan hasil yang sangat baik dengan akurasi 91%, presisi 97.67%, recall 84%, dan F1-score 90.32%. Temuan ini menggarisbawahi efektivitas kombinasi CNN dan metode pemrosesan citra dalam meningkatkan deteksi TB.
Comparison of Deep Learning Methods for Detecting Tuberculosis Through Chest X-Rays Udayana, I Putu Agus Eka Darma; Indrawan, I Gusti Agung; Prawira, I Made Karang Satria
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4345

Abstract

Chronic diseases are the leading cause of death worldwide, accounting for 73% of deaths in 2020. Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, is one of these diseases and has a significant impact on countries with a high TB burden due to a lack of radiologists and medical equipment. Early diagnosis of TB is crucial but challenging because of its similarity to lung cancer and the shortage of radiologists. A semi-automatic TB detection system is needed to support medical diagnosis and improve public health services. Deep learning technology, such as Convolutional Neural Networks (CNN), offers an effective solution for disease diagnosis with high accuracy. This study compares deep learning methods using an 8-layer CNN and VGG-19, both enhanced with Histogram Equalization (HE) for improved image quality. The study utilizes chest X-ray images of normal lungs and TB-affected lungs from Kaggle. Model performance is evaluated using accuracy, precision, recall, and F1-score metrics. Results indicate that the VGG-19 model outperforms the 8-layer CNN across all evaluation metrics, achieving an accuracy of 72.00% compared to 65.00% for the 8-layer CNN. VGG-19 also demonstrates better precision, recall, and F1-score, making it a more suitable choice for TB detection with enhanced image quality.