Christian Anderson Wint's II, Hans
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PREDIKSI HUNIAN HOTEL MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS: STUDI KASUS : HOTEL RUMAH KITA KOTA CIREBON Christian Anderson Wint's II, Hans; Irma Purnamasari, Ade; Suprapti, Tati
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 8 No. 2 (2024): JATI Vol. 8 No. 2
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v8i2.8342

Abstract

Penelitian ini bertujuan untuk menerapkan teknik data mining, termasuk algoritma K-Nearest Neighbors (K-NN), untuk memprediksi tingkat hunian hotel dari tahun 2021 hingga 2022 di hotel Rumah Kita yang terletak di jalan Siliwangi Kota Cirebon. Data yang digunakan dalam penelitian ini mencakup variabel seperti harga kamar, lokasi geografis, sarana hotel, dan faktor lain yang mempengaruhi tingkat hunian. Metode K-Nearest Neighbors (K-NN) digunakan untuk mengetahui tren dan hubungan antara variabel-variabel tersebut dengan tingkat hunian hotel. Data tahun 2021 dan 2022 digunakan sebagai data pelatihan untuk mengembangkan model prediksi, sementara data tahun 2023 digunakan untuk menguji akurasi model. Untuk mengukur efektivitas dan akurasi sistem, penelitian ini melakukan pengujian dengan menggunakan data aktual tahun 2023 selama periode tiga bulan terakhir. Pengujian dilakukan dengan membandingkan hasil prediksi model terhadap data sebenarnya untuk menghitung tingkat akurasi. Hasil pengujian menunjukkan bahwa model dapat memperkirakan tingkat okupansi hotel pada tahun 2023 dengan tingkat akurasi mencapai 91,67%. Prediksi hunian ramai mencapai 6 dengan akurasi class prediction 100% dan class recall 85,71%, sedangkan prediksi hunian sepi mencapai 5 dengan akurasi class prediction 83,33% dan class recall 100%.Hasil ini menunjukkan bahwa model K-NN yang dikembangkan efektif dalam memprediksi tingkat hunian dan dapat membantu manajemen hotel dalam perencanaan kapasitas, strategi penetapan harga, dan pengelolaan sumber daya. Penelitian ini berpotensi untuk diterapkan secara luas di industri perhotelan dan bisnis serupa lainnya yang mengandalkan perkiraan tingkat hunian. Dengan penambahan informasi tentang pengujian dan pengukuran akurasi, abstrak ini sekarang memberikan gambaran yang lebih lengkap tentang penelitian dan hasilnya.