Claim Missing Document
Check
Articles

Found 3 Documents
Search

SIMULATION OF THE INFLUENCE OF FIBER VOLUME FRACTION AND FIBER ORIENTATION ON THE STRENGTH OF POLYESTER COMPOSITE REINFORCED WITH GLASS FIBER IN BENDING STRENGTH Fakhruddin, Muhammad; Mashudi, Imam; Pramita Sari, Nurlia; Widhi Supriyanto, Nicky Suwandhy
Logic : Jurnal Rancang Bangun dan Teknologi Vol. 24 No. 2 (2024): July
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31940/logic.v24i2.79-86

Abstract

Fiber-reinforced composites can be classified into two parts, namely short fiber composites and long fiber composites. Long fibers are generally stronger than short fibers. Long fiber (continuous fiber) is more efficient in laying than short fiber but short fiber is easier to lay than long fiber. Fiber length affects the processability of the fiber composite. Judging from the theory, long fibers can transfer the load and stress from the stress point to the other fiber. In this research, we simulated the effects of volume fraction and fiber orientation in glass fiber-reinforced polyester composites on bending strength to examine the effect of each parameter on the mechanical properties of glass fiber composites. The mechanical properties of the composite were tested using the three-point bending and tensile testing methods. The study expects to find variations in mechanical properties with changes in the glass fiber volume fraction and fiber orientation. In this study, it is planned to function in a relevant environment, the components in this study must be able to operate properly and have been well integrated with prototype manufacturing that has been tested as a test tool function. Notably, the pinnacle of the bending test, measuring 170.41 MPa, was achieved at the specific combination of a 0.5 Fiber Volume Fraction and the 0-90o fiber orientation.
Effect of Volume Fraction and Matrix of Forged Fibreglass Composite on Wear Rate for Brake Pad Application Wihardias, Angga Faisal; Fakhruddin, Muhammad; Muzaki, Mochamad; Pramita Sari, Nurlia
Journal of Engineering and Applied Technology Vol. 6 No. 01 (2025): (March)
Publisher : Faculty of Engineering, Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jeatech.v6i01.76251

Abstract

Brake pads are one of the components of motorised vehicles that play an important role in slowing down or stopping the vehicle. This study aims to determine the effect of using variations in volume fraction and type of resin/matrix used on the wear rate that occurs, and the temperature generated during braking by utilising glass fibre as reinforcement. The research method uses experiments where the manufacture of brake pads composites was carried out by mixing all the ingredients then poured in a mold with a curing time of 1 day and the next process was testing using a disc brake system braking simulator and a thermal imaging camera with a variation in the percentage of glass fiber 45%, 55%, 65%, 75% and the type of resin used was epoxy resin and polyester. The results of this study indicate the effect of the type of resin/matrix used on the value of the wear rate that occurs. The test results show that the smallest wear rate is owned by specimen code D of 0.000000081 g/mm2.second with epoxy as the type of resin used. Then the largest wear rate is owned by specimen A1 of 0.000000154 g/mm2.second with polyester as the type of resin. It can be concluded that the higher the density of the polymer material, the lower the wear rate. It is expected that the composite brake pads have improved physical and mechanical properties that are better than the original brake pads.
SIMULATION OF THE INFLUENCE OF FIBER VOLUME FRACTION AND FIBER ORIENTATION ON THE STRENGTH OF POLYESTER COMPOSITE REINFORCED WITH GLASS FIBER IN BENDING STRENGTH Fakhruddin, Muhammad; Mashudi, Imam; Pramita Sari, Nurlia; Widhi Supriyanto, Nicky Suwandhy
Logic : Jurnal Rancang Bangun dan Teknologi Vol. 24 No. 2 (2024): July
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31940/logic.v24i2.79-86

Abstract

Fiber-reinforced composites can be classified into two parts, namely short fiber composites and long fiber composites. Long fibers are generally stronger than short fibers. Long fiber (continuous fiber) is more efficient in laying than short fiber but short fiber is easier to lay than long fiber. Fiber length affects the processability of the fiber composite. Judging from the theory, long fibers can transfer the load and stress from the stress point to the other fiber. In this research, we simulated the effects of volume fraction and fiber orientation in glass fiber-reinforced polyester composites on bending strength to examine the effect of each parameter on the mechanical properties of glass fiber composites. The mechanical properties of the composite were tested using the three-point bending and tensile testing methods. The study expects to find variations in mechanical properties with changes in the glass fiber volume fraction and fiber orientation. In this study, it is planned to function in a relevant environment, the components in this study must be able to operate properly and have been well integrated with prototype manufacturing that has been tested as a test tool function. Notably, the pinnacle of the bending test, measuring 170.41 MPa, was achieved at the specific combination of a 0.5 Fiber Volume Fraction and the 0-90o fiber orientation.