Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pengembangan Aplikasi Kasir dan Sistem Absensi Terintegrasi untuk Meningkatkan Efisiensi Operasional di Warmindo Khoirunnisa, Emila; Saputra, Rama Eka; Manurung, Ayub Michaelangelo; Afridiansyah, Rahmanda; Rezaroebojo, Rizal; Candra, Rejka Aditya; Rohman, Adib Annur; Ramadhan, Ahnaf Irfan; Zeniarja, Junta
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 7, No 2 (2024): MEI 2024
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/ja.v7i2.2032

Abstract

Perkembangan ekonomi global yang pesat telah menyebabkan peningkatan permintaan akan makanan, terutama di sektor kuliner. Warung makan Warmindo, salah satu bentuk Usaha Kecil dan Menengah (UKM) di bidang kuliner, menjadi pilihan yang populer di kalangan mahasiswa. Untuk bertahan dan berkembang di pasar yang kompetitif ini, warung makan Warmindo perlu beradaptasi dengan kemajuan teknologi. Aplikasi kasir sangat penting untuk manajemen keuangan yang efisien dan kepuasan pelanggan. Teknologi yang semakin maju memudahkan bisnis untuk bekerja dengan cepat dan efisien. Aplikasi kasir menawarkan fitur-fitur seperti penghitungan, pencatatan, dan laporan keuangan, sehingga meminimalisir kecurangan dan meningkatkan produktivitas karyawan. Selain itu, aplikasi absensi yang terintegrasi dapat membantu dalam pengolahan data dan pemantauan kehadiran, meningkatkan disiplin karyawan. Penelitian ini menerapkan aplikasi kasir dan sistem absensi terintegrasi pada Restoran WARMINDO NOCTURNAL di Semarang Barat, Kota Semarang, Jawa Tengah. Aplikasi ini bertujuan untuk mengoptimalkan proses penjualan dan transaksi, serta pemantauan kehadiran karyawan yang terintegrasi.
Comparison of ResNet-50, EfficientNet-B1, and VGG-16 Algorithms for Cataract Eye Image Classification Santoso, Ilham; Manurung, Ayub Michaelangelo; Subhiyakto, Egia Rosi
Journal of Applied Informatics and Computing Vol. 9 No. 2 (2025): April 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i2.8968

Abstract

Cataract is a leading cause of blindness worldwide, emphasizing the need for an effective early detection approach. This study evaluates the capabilities of three widely-used deep learning models—ResNet-50, EfficientNet-B1, and VGG-16—in classifying visual data. The analysis was conducted on a dataset of 2,112 images, comprising 1,074 normal cases and 1,038 cataract cases. The findings reveal that ResNet-50 achieved the best accuracy at 98.61%, followed by EfficientNet-B1 at 96.64% and VGG-16 at 93.82%. In comparison, previous research using Convolutional Neural Network (CNN) techniques reported an accuracy of 92.93%. These results highlight ResNet-50's superior potential for image classification tasks in this domain. This study contributes significantly to the selection of robust models for building an automated cataract detection framework.
The Application of Deep Learning for Skin Disease Classification Using the EfficientNet-B1 Model Manurung, Ayub Michaelangelo; Santoso, Ilham; Subhiyakto, Egia Rosi
Journal of Applied Informatics and Computing Vol. 9 No. 2 (2025): April 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i2.9100

Abstract

The skin, being the largest organ in the human body, plays a vital role in protecting against various external threats. However, cases of skin diseases are steadily rising across countries, making it a significant global health concern. Diagnosis often faces challenges due to symptom variations and low public awareness, highlighting the need for automated technology in skin disease detection. This study developed an automated classification system for skin diseases using EfficientNet-B1, capable of categorizing five skin conditions: Acne and Rosacea, Eczema, Melanoma Skin Cancer Nevi and Moles, Normal, Vitiligo, Psoriasis pictures Lichen Planus and related diseases, Seborrheic Keratoses and other Benign Tumors, Tinea Ringworm Candidiasis and other Fungal Infections. The system utilized 1.571 plus 1641 JPG digital images resized to 224 x 224 pixels, with 80% of the data allocated for training and 20% for testing. The trained model achieved a high accuracy of 99%, demonstrating the system's potential to support faster and more accurate diagnostic processes.