Claim Missing Document
Check
Articles

Found 2 Documents
Search

MENINGKATKAN PENJUALAN TOKO MUTHIA PLASTIK DENGAN MENGANALISA STRATEGI PENJUALAN DI MASA PANDEMI Tasya, Agnes; Wahdini, Mega; Azizah, Rahmatul; Candry, Riva Nada; Putra, Ramdani Bayu
KONTAN: Jurnal Ekonomi, Manajemen dan Bisnis Vol 1, No 1 (2022): KONTAN: Jurnal Ekonomi, Manajemen dan Bisnis
Publisher : CV Widina Media Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59818/kontan.v1i1.156

Abstract

This research aims to fulfill the PBL (Project Base Learning) assignment of the entrepreneurship course and to find out: 1) Increase sales at Muthia Plastik Shop by Analyzing Sales Strategies. 2) Marketing strategies that must be applied to increase product sales at Muthia Plastik Shop. This study uses descriptive qualitative research methods because it provides a description of the research results in a descriptive manner, accurate images and facts from observations in the field. Which then draws conclusions from the analyzed data. Direct observation at the location. The results of this study show: 1). The marketing strategy of Toko Muthia Plastik uses the 4p marketing mix to increase product sales, namely product strategy, price strategy, distribution or location strategy and promotion strategy. 2). The marketing strategy that must be carried out to increase sales at Toko Muthia Plastik is to maximize the promotion strategy, namely placing banners in front of the store so that they can be seen by potential customers, and advertising through social media such as Instagram to increase sales.ABSTRAKPenelitian ini bertujuan untuk memenuhi tugas PBL (Project Base Learning) mata kuliah kewirausahaan dan untuk mengetahui: 1) Meningkatkan penjualan pada Toko Muthia Plastik dengan Menganalisa Strategi Penjualan. 2) Strategi pemasaran yang harus diterapkan untuk meningkatkan penjualan produk di Toko Muthia Plastik. Penelitian ini menggunakan metode penelitian deskriptif kualitatif karena memberikan uraian pada hasil penelitian secara deskriptif, gambar dan fakta yang akurat dari hasil pengamatan di lapangan. Yang kemudian ditarik kesimpulan dari data yang di analisis tersebut. Observasi langsung di lokasi. Hasil penelitian ini menunjukkan: 1). Strategi pemasaran Toko Muthia Plastik menggunakan bauran pemasaran 4p untuk meningkatkan penjualan produk yaitu strategi produk, strategi harga, strategi distribusi atau lokasi dan strategi promosi. 2). Strategi pemasaran yang harus dilakukan untuk meningkatkan penjualan pada Toko Muthia plastik adalah dengan memaksimalkan strategi promosi yaitu memasang spanduk di depan toko agar dapat dilihat oleh calon konsumen, dan memasang iklan melalui media sosial seperti Instagram untuk meningkatkan penjualan.
Comparison of Discrete Adaptive Boosting Algorithms for Classification and Regression Tree and Naive Bayes in Pistachio Nut Classification Aprihartha, Moch. Anjas; Azzahro, Salwa Paramita; Azizah, Rahmatul; Andrianza, Muhammad Rafly
Jurnal Internasional Teknik, Teknologi dan Ilmu Pengetahuan Alam Vol 7 No 1 (2025): International Journal of Engineering, Technology and Natural Sciences
Publisher : Universitas Teknologi Yogyakarta, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46923/ijets.v7i1.396

Abstract

Machine learning is an effective tool for identifying and classifying various conditions, such as predicting shoe sales, classifying raisin types, classifying fruit productivity, and so on. This technique is widely used in various sectors. One example is pistachio sorting. In some places, pistachio sorting is still done traditionally by humans. This is disadvantageous because the costs tend to be high, and the sorting process becomes inconsistent and less effective. The use of machine learning algorithms can be a breakthrough in overcoming this problem. Naive Bayes and Classification and Regression Tree (CART) are machine learning algorithms commonly used in the classification process. To improve classification accuracy, these two basic models are integrated with the Discrete Adaptive Boosting (Discrete AdaBoost) algorithm. This study aims to assess the effectiveness of machine learning algorithms in identifying the characteristics of pistachios. Algorithm testing was carried out using the k-fold cross-validation technique. The estimated average performance results of all classification models do not show significant differences. The Discrete AdaBoost CART model has the best accuracy, specificity, and f1-score, at 86.49%, 85.78%, and 88.32%, respectively. Therefore, the Discrete AdaBoost CART model is a suitable model for classifying pistachio types. This shows that ensemble approaches such as Discrete AdaBoost CART can make a significant contribution to improving the performance of classification systems, especially in the context of data with many relevant features. This study was limited to identifying binary classes of pistachios. In further research, it is recommended to explore machine learning algorithms for multiclass of pistachio nuts.