Onyango Konditi, Dominic Bernard
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Inset-fed microstrip patch antenna optimization for 2.4 GHz using surrogate model assisted differential evolution machine learning algorithm Alaba, Magnoudewa; Onyango Konditi, Dominic Bernard; Oduol, Vitalice Kalecha
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp901-912

Abstract

In this work, we have used the surrogate model assisted differential evolution (SADEA) to model a one and two-element inset-fed patch antenna array to optimize its parameters for efficiency and usability. The microstrip patch antennas operates in a frequency band of 2.4 GHz. The optimization process focused on fine-tuning the patch length, patch width, and notch width to enhance key performance metrics directivity, return loss, and bandwidth. The design is made in CST software with an FR-4 substrate and simulated in the ADE1.0 software a MATLAB toolbox. Significant enhancements were achieved including a directivity gain of 3.04 dB, and 5.58 dB a return loss of -19 dB, -16 dB, and an expanded impedance bandwidth from 0.0798 GHz, 0.0588 GHz to 0.0951 GHz, 0.0824 GHz respectively. The antenna was constructed and then measured. The findings showed that the measurements and the fabrication process closely matched, especially in terms of return loss.
Design of an enhanced dual-band microstrip patch antenna with defected ground structures for WLAN and WiMax El Issawi, Mohamed Lemine; Onyango Konditi, Dominic Bernard; Usman, Aliyu Danjuma
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp165-174

Abstract

This research presents an innovative dual-band microstrip patch antenna design enhanced with defected ground structures (DGS) and barium strontium titanate (BST) thin film, tailored for wireless local area network (WLAN) and WiMax applications. The first design phase involved the development of an microstrip patch antenna (MPA) using an flame retardant (FR4) substrate with a permittivity (εr1) of 4.3 and a thickness of 1.524 mm, enhanced with DGS. This configuration achieved a single-band resonance at 4.1 GHz, with a bandwidth of 0.82 GHz and a return loss (S11) of -32 dB. The second phase involved the integration of a BST thin film, with a high permittivity(εr2) of 250 and a thickoness of 0.1 mm, into the DGS-enhanced microstrip patch antenna (MPA). This mdification led to a transformation in the antenna's performance, enabling dual-band operation at resonance frequencies of 2.8 GHz and 5.8 GHz. Further, there was a corresponding substantial increase in bandwidth to 1.34 GHz and 1.25 GHz, respectively, an improvement in S11 values to -16.3 dB and -21.4 dB. Moreover, and antenna’s size of 14×10×1.524 mm3 . The study underscores the critical role of innovative material use and design optimization in advancing antenna technology, offering significant enhancements in bandwidth, and miniaturization, for wireless communication systems.