Al-Rababa’a, Ahmad
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Dimensionality reduction for off-line object recognition and detection using supervised learning Awwad, Sari; Al-Rababa’a, Ahmad; Taamneh, Salah; El-Salhi, Subhieh M.; Mughaid, Ala
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp657-671

Abstract

Object recognition and detection is an area of study, within intelligence and computer vision. It finds applications in fields such as surveillance, detailed activity analysis, robotics and object tracking. The primary focus of research papers in this domain revolves around enhancing the precision of object identification and detection regardless of whether the objects are located indoors or outdoors. To address this challenge, a new approach involving the utilization of SIFT features for information extraction has been proposed. Our approach encompasses two components; the implementation of dimensionality reduction through principal component analysis (PCA) to eliminate redundancies; secondly the incorporation of feature vector encoding using fisher encoding techniques. The RGB-D dataset employed contains 300 objects across scenarios with emphasis on colored aspects rather than depth. The SIFT features are categorized using a support vector machine (SVM) into 7 classes. When compared to using SIFT features integrating them with encoding methods notably enhances recall, precision and F1-score by than 30% through fisher encoding and PCA techniques. The study concludes with an evaluation based on n-cross validation methodology along, with detailed experimental results.