Claim Missing Document
Check
Articles

Found 2 Documents
Search

Dimensionality reduction for off-line object recognition and detection using supervised learning Awwad, Sari; Al-Rababa’a, Ahmad; Taamneh, Salah; El-Salhi, Subhieh M.; Mughaid, Ala
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp657-671

Abstract

Object recognition and detection is an area of study, within intelligence and computer vision. It finds applications in fields such as surveillance, detailed activity analysis, robotics and object tracking. The primary focus of research papers in this domain revolves around enhancing the precision of object identification and detection regardless of whether the objects are located indoors or outdoors. To address this challenge, a new approach involving the utilization of SIFT features for information extraction has been proposed. Our approach encompasses two components; the implementation of dimensionality reduction through principal component analysis (PCA) to eliminate redundancies; secondly the incorporation of feature vector encoding using fisher encoding techniques. The RGB-D dataset employed contains 300 objects across scenarios with emphasis on colored aspects rather than depth. The SIFT features are categorized using a support vector machine (SVM) into 7 classes. When compared to using SIFT features integrating them with encoding methods notably enhances recall, precision and F1-score by than 30% through fisher encoding and PCA techniques. The study concludes with an evaluation based on n-cross validation methodology along, with detailed experimental results.
Gene set imputation method-based rule for recovering missing data using deep learning approach Al-Rahayfeh, Amer; Atiewi, Saleh; Almiani, Muder; Mughaid, Ala; Razaque, Abdul; Abu-Salih, Bilal; Alweshah, Mohammed; Alrawajfeh, Alaa
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp4296-4317

Abstract

Data imputation enhances dataset completeness, enabling accurate analysis and informed decision-making across various domains. In this research, we propose a novel imputation method, a spectral clustering based on a gene set using adaptive weighted k-nearest neighbor (AWKNN), and an imputation of missing data using a convolutional neural network algorithm for accurate imputed data. In this research, we have considered the Kaggle water quality dataset for the imputation of missing values in water quality monitoring. Data cleaning detects inaccurate data from the dataset by using the median modified Weiner filter (MMWFILT). The normalization technique is based on the Z-score normalization (Z-SN) approach, which improves data organization and management for accurate imputation. Data reduction minimizes unwanted data and the amount of capacity required to store data using an improved kernel correlation filter (IKCF). The characteristics and patterns of data with specific columns are analyzed using enhanced principal component analysis (EPCA) to reduce overfitting. The dataset is classified into complete data and missing data using the light- DenseNet (LIGHT DN) approach. Results show the proposed outperforms traditional techniques in recovering missing data while preserving data distribution. Evaluation based on pH concentration, chloramine concentration, sulfate concentration, water level, and accuracy.