Gunasekaran, Saraswathy Shamini
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimizing Smart Power Grid Stability Based on the Prediction of a Deep Learning Model Hamad Khaleefah, Shihab; A. Mostafa, Salama; Gunasekaran, Saraswathy Shamini; Farooq Khattak, Umar; Ahmed Jubair, Mohammed; Afyenni, Rita
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.2758

Abstract

A smart grid is an electricity transmission system that uses digital technology to control getting and dispatching electricity from all generation sources to satisfy end users' fluctuating electricity demands. It achieves this through deploying technologies such as technology and smart grids, which are pivotal in increasing the power supply's efficiency, reliability, and sustainability to the public. Decentralized Smart Grid Control (DSGC) is a system where the control and decision-making functions are distributed to different grid points instead of in one central place. This paradigm is critical for the fault resistance and efficiency of the grid because it enables the local regions to carry on by themselves, manage electric power flows, respond to changes, and integrate many kinds of energy sources successfully. The grid frequency is monitored via the DSGC to ensure dynamic grid stability estimation. All parties, from users to energy producers, may take advantage of the price of power tied to grid frequency. The DSGC, a vital component of this research, gathered information about clients' consumption and used several assumptions to predict the behavior of the consumers. It establishes a method to assess against current supply circumstances and the resultant recommended pricing information. This research proposes a long short-term memory (LSTM) model to analyze data gathered regarding smart grid characteristics and predict grid stability. The results show a strong capacity for the LSTM model, achieving an accuracy of 96.73% with a loss of just 7.44%. The model also achieves a precision of 96.70%, recall of 98.18%, and F1-score of 97.43%.
A Deep Learning-based Fault Detection and Classification in Smart Electrical Power Transmission System Khaleefah, Shihab Hamad; A. Mostafa, Salama; Gunasekaran, Saraswathy Shamini; Khattak, Umar Farooq; Yaacob, Siti Salwani; Alanda, Alde
JOIV : International Journal on Informatics Visualization Vol 8, No 2 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.2701

Abstract

Progressively, the energy demands and responsibilities to control the demands have expanded dramatically. Subsequently, various solutions have been introduced, including producing high-capacity electrical generating power plants, and applying the grid concept to synchronize the electrical power plants in geographically scattered grids. Electrical Power Transmission Networks (EPTN) are made of many complex, dynamic, and interrelated components. The transmission lines are essential components of the EPTN, and their fundamental duty is to transport electricity from the source area to the distribution network. These components, among others, are continually prone to electrical disturbance or failure. Hence, the EPTN required fault detection and activation of protective mechanisms in the shortest time possible to preserve stability. This research focuses on using a deep learning approach for early fault detection to improve the stability of the EPTN. Early fault detection swiftly identifies and isolates faults, preventing cascading failures and enabling rapid corrective actions. This ensures the resilience and reliability of the grid, optimizing its operation even in the face of disruptions. The design of the deep learning approach comprises a long-term and short-term memory (LSTM) model. The LSTM model is trained on an electrical fault detection dataset that contains three-phase currents and voltages at one end serving as inputs and fault detection as outputs. The proposed LSTM model has attained an accuracy of 99.65 percent with an error rate of just 1.17 percent and outperforms neural network (NN) and convolutional neural network (CNN) models.