Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementasi Structured System Analysis and Design Method pada Sistem Informasi Retribusi Pasar Aqil, Moh. Aqil Mukhtar Alfarera; Susanto, Adi
JITU Vol 8 No 1 (2024)
Publisher : Universitas Boyolali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36596/jitu.v8i1.1367

Abstract

Mojopanggung market is a traditional market located in mojopanggung sub-district, giri sub-district, banyuwangi regency. Based on the field survey, there are problems with the data processing system for market retribution income reports managed by market treasurers who stell have a conventional approach in processing payment data recorded in books and microsoft excel. This results in the current system having many weaknesses and limitations, increasing the risk of data loss. In addition, providing information to recapitulation officers in the field of market management becomes difficult. Therefore, it is necessary to design a website-based market levy income information system, which can handle problems that arise, where the system can be used to monitor market levy income report data, as well as facilitate the provision of information to recapitulation officers in the field of market management the design of a website-based market levy income information system was built by applying the structured system analysis and design method (SSADM). From the results of research that has been carried out, every company or government agency is encouraged to utilize information technology as a means of supporting business activities. A part from that, designing a website-based market levy income information system is very necessary and needed, in order to make it easier to provide information related to market traders’ dependents, as well as reporting levy income results and activities for monitoring data, so that in can produce levy income report data more easily and effectively
Analisis Pengelompokan Prestasi Mahasiswa Universitas Malang Menggunakan Metode K-Means Clustering Aqil, Moh. Aqil Mukhtar Alfarera; Fatah , Zaehol
JITU Vol 8 No 2 (2024)
Publisher : Universitas Boyolali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36596/jitu.v8i2.1704

Abstract

Pilihan tepat menggunakan data mining dalam menganalisis penerapan teknik K-Means Clustering dalam pengelompokan data prestasi mahasiswa universitas malang (UM). Dengan meningkatnya jumlah mahasiswa dan variasi prestasi, pengelolaan data prestasi di perguruan tinggi menjadi lebih kompleks, sehingga metode manual tidak cukup memadai. K-Means Clustering dipilih karena kemampuanya untuk mengelompokan data berdasarkan atribut tertentu, yang memudahkan identifikasi pola dan tren. Penelitian ini bertujuan membuktikan efektivitas K-Means dalam menganalisis data prestasi, serta menambah literatur mengenai penerapan data mining di pendidikan. Dataset yang digunakan mencakup indeks prestasi mahasiswa dari berbagai program studi di Universitas Malang pada periode 2018 hingga 2022. Data diolah untuk mengelompokan prestasi mahasiswa secara efisien. Model klastering dibangun menggunakan salah satu algoritma dalam metode clustering yaitu K-Means. Penelitian ini menghasilkan klaster terbaik dengan jumlah 3 klaster, proses untuk menentukan pengelompokan terbaik dilakukan dengan menguji model 6 klaster yang berbeda. Pemilihan klaster terbaik dilakukan menggunakan pengujian indeks Davies Bouldin. Berdasarkan penelitian dengan hasil 3 kelompok tersebut dapat dikategorikan sebagai, cluster 0 dengan kategori rendah dengan nilai 100, cluster 1 dengan kategori tinggi dengan nilai 4.100, dan cluster 2 dengan kategori menengah dengan nilai 1.900.