Putri, Ni Kadek Devi Adnyaswari
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Gabor wavelet and multiclass support vector machine for braille image classification Agustina, Feri; Rachmawanto, Eko Hari; Putri, Ni Kadek Devi Adnyaswari; Saputro, Fakhri Rasyid; Lestiawan, Heru; Suprayogi, Suprayogi; Huda, Solichul
Journal of Soft Computing Exploration Vol. 5 No. 3 (2024): September 2024
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v5i3.474

Abstract

Braille is a letter designed for the visually impaired. As a family with normal vision who have a visually impaired child find it difficult to Teach their child how to learn and understand the process of learning from home. Learning braille requires good finger sensitivity and memory to memorize each letterform, making it difficult to learn.  With this study, braille letters can be detected from the image using the Gabor Wavelet method to extract braille images and combined with the Multiclass Support Vector Machine (Multiclass SVM) algorithm as a classification method for extracted braille images. Data testing was performed using a confusion matrix to determine the level of precision, accuracy, and recall. According to the results of tests performed on 910 braille data using confusion matrix, the highest recognition accuracy was 98,02%. The accuracy of these results is impacted by the parameters of the training process, the training data, and the test data used. This research has the opportunity to be developed in voice-based card recognition to help the visually impaired in the future research.
OPTIMIZING BUTTERFLY CLASSIFICATION THROUGH TRANSFER LEARNING: FINE-TUNING APPROACH WITH NASNETMOBILE AND MOBILENETV2 Putri, Ni Kadek Devi Adnyaswari; Luthfiarta, Ardytha; Putra, Permana Langgeng Wicaksono Ellwid
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 3 (2024): JUTIF Volume 5, Number 3, June 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.3.1583

Abstract

Butterflies play a significant role in ecosystems, especially as indicators of the state of biological balance. Each butterfly species is distinctly different, although some also show differences with very subtle traits. Etymologists recognize butterfly species through manual taxonomy and image analysis, which is time-consuming and costly. Previous research has tried to use computer vision technology, but it has shortcomings because it uses a small distribution of data, resulting in a lack of programs for recognizing various other types of butterflies. Therefore, this research is made to apply computer vision technology with the application of transfer learning, which can improve pattern recognition on image data without the need to start the training process from scratch. Transfer learning has a main method, which is fine-tuning. Fine-tuning is the process of matching parameter values that match the architecture and freezing certain layers of the architecture. The use of this fine-tuning process causes a significant increase in accuracy. The difference in accuracy results can be seen before and after using the fine-tuning process. Thus, this research focuses on using two Convolutional Neural Network architectures, namely MobileNetV2 and NASNetMobile. Both architectures have satisfactory accuracy in classifying 75 butterfly species by applying the transfer learning method. The results achieved on both architectures using fine-tuning can produce an accuracy of 86% for MobileNetV2, while NASNetMobile has a slight difference in accuracy of 85%.