Solichul Huda, Solichul
Informatic Engineering Department, Faculty of Computer Science, Universitas Dian Nuswantoro, Jalan Nakula I No. 5-11, Semarang

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

PERANCANGAN PROTIPE PENGGAMBAR POLA BATIK ROBOT KARTESIAN 2 DOF METODE PENGURUTAN DATA KOORDINAT JARAK EUCLIDEAN BERBASIS ARDUINO UNO Huda, Solichul; Sumardi, Sumardi; Setiyono, Budi
Transient: Jurnal Ilmiah Teknik Elektro TRANSIENT, VOL. 7, NO. 2, JUNI 2018
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1079.136 KB) | DOI: 10.14710/transient.7.2.552-559

Abstract

Teknologi yang terus maju mendorong manusia untuk meningkatkan produktivitas dengan mengubah sistem manual ke sistem otomasi . modernisasi merambah hampir ke semua aspek tak terkecuali bidang kesenian. Batik adalah warisan leluhur nusantara yang telah diakui oleh UNESCO  sebagai warisan budaya milik Indonesia namun industri batik di Indonesia belum begitu berkembang. Modernisasi industri di bidang seni batik diharapkan mampu mengoptimalkan prduktivitas batik.  Penelitian ini merancang algoritma dan program pada MATLAB yang  digunakan untuk mengatur gerak prototipe pembatik robot kartesian dengan 2 derajat kebebasan (2 DOF). Data masukan berupa gambar yang kemudian diolah untuk didapatkan urutan koordinat tepinya. Urutan koordinat diproses dan dikirim pada plant dengan menggunakan software MATLAB berbasis Graphical User Interface (GUI). Robot Kartesian dengan 2 derajat kebebasan (DOF) dan sebuah pena tulis (end effector) yang dipasang pada ujung lengannya untuk menggambar pola batik. Sebuah servo dipasang untuk menggerakkan end effector, dan dua buah stepper yang terkopel dengan ulir digunakan untuk mengarahkan pena tulis pada koordinat X-Y yang telah tersusun. Pengujian dilakukan dengan mengirimkan data urutan koordinat pada plant atau dengan melihat urutan proses penggambaran pada grafik. Error yang didapatkan pada pengujian program dan algoritma adalah 2,32%
Completing Sudoku Games Using the Depth First Search Algorithm Alfany, Fauzan Maulana; Sari, Christy Atika; Jatmoko, Cahaya; Laksana, Deddy Award Widya; Irawan, Candra; Huda, Solichul
(JAIS) Journal of Applied Intelligent System Vol. 9 No. 1 (2024): Journal of Applied Intelligent System
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jais.v9i1.10017

Abstract

Sudoku is a digital game that is included in the type of logic-based puzzle game where the goal is to fill in the puzzle with random numbers. Therefore, in this research it is proposed to use Artificial Intelligence which contains the Depth First Search Algorithm to track the number of possible solutions that lead to only one so that it becomes efficient. This game has different levels of difficulty such as easy, medium and difficult. The time and complexity of execution will vary depending on the difficulty so it is proposed to use Android Studio software. The experimental results prove that there is an increase in playing the Sudoku game quickly and accurately by applying the Depth First Search Algorithm method. This is proven by the ability to complete this game using the Depth First Search Algorithm using the Android Studio programming language. The average time at the easy level is 11:04 minutes, at the normal level is 10:52 minutes, at the hard level is 25:46 minutes, and at the extreme level is 38 minutes.
Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Potensi Hilangnya Nasabah Bank Naufal, Mohammad Farid; Subrata, -; Susanto, Alvin Fernando; Kansil, Christian Nathaneil; Huda, Solichul
Techno.Com Vol. 22 No. 1 (2023): Februari 2023
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/tc.v22i1.7302

Abstract

Nasabah adalah salah satu aset paling berharga dari sebuah bisnis perbankan. Mereka adalah ujung tombak pengguna produk yang nantinya memberikan keuntungan bagi bank, terutama pada produk kartu kredit. Penelitian ini bertujuan untuk mengetahui nasabah mana sajakah yang berpotensi untuk meninggalkan layanan kartu kredit dari sebuah bank. Pada penelitian sebelumnya belum ada yang melakukan analisis perbandingan algoritma machine learning dengan berbagai macam tahapan preprocessing untuk memprediksi potensi hilangnya nasabah bank. Penelitian ini melakukan analisis perbandingan algoritma machine learning dengan kombinasi tahapan preprocessing untuk memprediksi potensi hilangnya nasabah bank. Analisis ini penting untuk pemilihan algoritma yang paling cocok untuk prediksi potensi hilangnya nasabah bank. Pada tahapan preprocessing diterapkan dimensionality reduction dan feature selection menggunakan metode Variance threshold dan Correlation coefficient. Metode klasifikasi yang digunakan adalah Logistic regression (LR), Decision tree (DT), dan Naïve Bayes (NB). Hasil tertinggi dari ketiga metode tersebut adalah Decision tree yang mampu memiliki nilai F1 Score sebesar 96% dan nilai akurasi mencapai 93%. Logistic regression dan Naïve Bayes berada pada urutan kedua dan ketiga setelah decision tree. Tahapan data preprocessing tidak memberikan pengaruh yang signifikan pada nilai F1 Score dan akurasi.
Gabor wavelet and multiclass support vector machine for braille image classification Agustina, Feri; Rachmawanto, Eko Hari; Putri, Ni Kadek Devi Adnyaswari; Saputro, Fakhri Rasyid; Lestiawan, Heru; Suprayogi, Suprayogi; Huda, Solichul
Journal of Soft Computing Exploration Vol. 5 No. 3 (2024): September 2024
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v5i3.474

Abstract

Braille is a letter designed for the visually impaired. As a family with normal vision who have a visually impaired child find it difficult to Teach their child how to learn and understand the process of learning from home. Learning braille requires good finger sensitivity and memory to memorize each letterform, making it difficult to learn.  With this study, braille letters can be detected from the image using the Gabor Wavelet method to extract braille images and combined with the Multiclass Support Vector Machine (Multiclass SVM) algorithm as a classification method for extracted braille images. Data testing was performed using a confusion matrix to determine the level of precision, accuracy, and recall. According to the results of tests performed on 910 braille data using confusion matrix, the highest recognition accuracy was 98,02%. The accuracy of these results is impacted by the parameters of the training process, the training data, and the test data used. This research has the opportunity to be developed in voice-based card recognition to help the visually impaired in the future research.