Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Comparative Analysis of CryptoGAN: Evaluating Quality Metrics and Security in GAN-based Image Encryption Bhat, Ranjith; Nanjundegowda, Raghu
Journal of Robotics and Control (JRC) Vol 5, No 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.23096

Abstract

Balancing security with image quality is a critical challenge in image encryption, particularly for applications like medical imaging that require high visual fidelity. Traditional encryption methods often fail to preserve image integrity and are vulnerable to advanced attacks. This paper introduces CryptoGAN, a novel GAN-based model designed for image encryption. CryptoGAN employs an architecture to effectively encrypt a dataset of 2000 butterfly images with a resolution of 256x256 pixels, integrating Generative Adversarial Networks (GANs) with symmetric key encryption. Using a U-Net Generator and a PatchGAN Discriminator, CryptoGAN optimizes for key metrics including Structural Similarity Index (SSIM), entropy, and correlation measures. CryptoGAN's performance is comprehensively compared against state-of-the-art models such as Cycle GAN-based Image Steganography, EncryptGAN, and DeepEDN. Our evaluation, based on metrics like SSIM, entropy, and PSNR, demonstrates CryptoGAN's superior ability to enhance encryption robustness while maintaining high image quality. Extensive experimental results confirm that CryptoGAN effectively balances security and visual fidelity, making it a promising solution for secure image transmission and storage. This study is supported by a literature survey and detailed analysis of the model architecture, underscoring CryptoGAN's significant contributions to the field of image encryption.
Comparative Analysis of CryptoGAN: Evaluating Quality Metrics and Security in GAN-based Image Encryption Bhat, Ranjith; Nanjundegowda, Raghu
Journal of Robotics and Control (JRC) Vol. 5 No. 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.23096

Abstract

Balancing security with image quality is a critical challenge in image encryption, particularly for applications like medical imaging that require high visual fidelity. Traditional encryption methods often fail to preserve image integrity and are vulnerable to advanced attacks. This paper introduces CryptoGAN, a novel GAN-based model designed for image encryption. CryptoGAN employs an architecture to effectively encrypt a dataset of 2000 butterfly images with a resolution of 256x256 pixels, integrating Generative Adversarial Networks (GANs) with symmetric key encryption. Using a U-Net Generator and a PatchGAN Discriminator, CryptoGAN optimizes for key metrics including Structural Similarity Index (SSIM), entropy, and correlation measures. CryptoGAN's performance is comprehensively compared against state-of-the-art models such as Cycle GAN-based Image Steganography, EncryptGAN, and DeepEDN. Our evaluation, based on metrics like SSIM, entropy, and PSNR, demonstrates CryptoGAN's superior ability to enhance encryption robustness while maintaining high image quality. Extensive experimental results confirm that CryptoGAN effectively balances security and visual fidelity, making it a promising solution for secure image transmission and storage. This study is supported by a literature survey and detailed analysis of the model architecture, underscoring CryptoGAN's significant contributions to the field of image encryption.
A Review on Comparative Analysis of Generative Adversarial Networks’ Architectures and Applications Bhat, Ranjith; Nanjundegowda, Raghu
Journal of Robotics and Control (JRC) Vol. 6 No. 1 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i1.24160

Abstract

Generative Adversarial Networks (GANs) are a major advancement in generative modeling, surpassing traditional machine learning models in tasks such as image generation, super-resolution, and image-to-text translation. A GAN consists of two neural networks: a Generator (G), which creates data from noise or a latent vector, and a Discriminator (D), which determines whether the data is real or generated. These networks train competitively, improving each other iteratively to produce increasingly realistic outputs. However, GANs face challenges like mode collapse, unstable training, and convergence issues, leading to the adoption of strategies such as instance normalization and enhanced loss functions. Future research can focus on improving stability, developing novel loss functions, and applying GANs in unsupervised learning. Performance metrics like Inception Score, Fréchet Inception Distance (FID), and Structural Similarity Index (SSIM) are essential for evaluating and comparing GAN architectures. Additionally, ethical concerns, including the misuse of GANs for deepfakes and synthetic data, underscore the importance of transparency, accountability, and ethical standards in research and deployment. This review provides an accessible introduction to GANs for novice researchers, along with a detailed analysis of their limitations, applications, and future prospects, offering valuable insights and direction for advancing this field.