Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Metode Regresi Linier Berganda dan K-Nearest Neighbor (K-NN) pada Kepuasan Terhadap Pelayanan Perpustakaan Faisal, Muh; Saleh, Hamsir; Thaib, Rahmat
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 4 (2024): Agustus 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i4.7724

Abstract

Abstrak - Dalam setiap jenjang pendidikan, perpustakaan menjadi salah satu pusat informasi pembelajaran. Melihat perpustakaan sebagai pusat informasi pembelajaran, maka harus disesuaikan dengan ekspektasi penggunanya, ditata dan diatur dengan sistem tertentu sehingga memudahkan pengguna dalam mengakses informasinya (pelayanan). Kepuasan pengguna merupakan alat ukur keberhasilan suatu perpustakaan. Dalam ilmu statistik, regresi mempelajari hubungan antara satu variabel dengan variabel yang lain. Misalnya dalam menentukan hubungan kepuasan pengguna dengan pelayanan perpustakaan. Regresi dimanfaatkan selain untuk menentukan hubungan kuantitatif antar variabel juga untuk meramalkan nilai dari variabel dimasa yang akan datang. Analisis regresi linier adalah teknik statistika yang dapat digunakan untuk menjelaskan pengaruh variabel bebas (independent variable) terhadap variabel tak bebas (dependent variable). Adapun K-NN, merupakan algoritma yang memberikan pengenalan ke k-terdekat sebagai nilai prediksi dari query instance yang baru, yang dasar pendekatan unsupervised k-Nearest Neighbor atau UNN, yang mana dalam regresi adalah untuk menganalisis nilai output. Berdasarkan data yang dikumpulkan akan diketahui kualitas pelayanan perpustakaan terhadap kepuasan pengguna. Penelitian ini bertujuan untuk mengetahui prediksi kepuasan pengguna perpustakaan menggunakan kombinasi regresi linier berganda dan K-Nearest Neighbor(K-NN).Kata Kunci : Prediksi, Analisis, Perpustakaan,  Kepuasan, Regresi Linier Berganda, K-NN Abstract - In every level of education, the library is one of the learning information centers. Seeing the library as a learning information center, it must be adjusted to the expectations of its users, organized and arranged with a certain system so as to facilitate users in accessing their information (service). User satisfaction is a measure of the success of a library. In statistics, regression studies the relationship between one variable and another. For example, in determining the relationship between user satisfaction and library services. Regression is used not only to determine the quantitative relationship between variables but also to predict the value of variables in the future. Linear regression analysis is a statistical technique that can be used to explain the effect of independent variables on dependent variables. As for K-NN, it is an algorithm that provides recognition to the k-nearest as the predictive value of the new query instance, which is the basis of the unsupervised k-Nearest Neighbor or UNN approach, which in regression is to analyze the output value. Based on the data collected, the quality of library services will be known to user satisfaction. This study aims to determine the prediction of library user satisfaction using a combination of multiple linear regression and K-Nearest Neighbor (K-NN).Keywords: Prediction, Analysis, Library, Satisfaction, Multiple Linear Regression, K-NN
Comparison of NBC and KNN in Classifying Stunting in Children in Rural Areas Betrisandi, Betrisandi; Thaib, Rahmat
Jambura Journal of Electrical and Electronics Engineering Vol 8, No 1 (2026): Januari - Juni 2026
Publisher : Electrical Engineering Department Faculty of Engineering State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjeee.v8i1.34488

Abstract

Stunting is one of the chronic nutritional problems that remains a serious concern in Indonesia. Children who experience stunting not only experience physical growth retardation, but also cognitive development disorders that have the potential to reduce intelligence, academic achievement, and productivity in adulthood. The problem in this study is the high prevalence of stunting in children in rural areas. The purpose of this study is to analyse the performance of the Naïve Bayes Classifier (NBC) and K-Nearest Neighbour (KNN) and compare the performance of the two methods to determine the most optimal method for classifying stunting status in children in accordance with the Research Master Plan with a focus on engineering and technology for improving ICT content and the research topic of big data technology development. The research methods used included data collection through observation and interviews. Data processing and analysis were carried out by comparing the NBC and KNN methods in classifying child stunting. The results of this study indicate that the NBC method has higher accuracy, namely 95.24% and an F1-score of 97%, compared to the KNN method, which has an accuracy of 76.19% and an F1-score of 86%. Therefore, the KNN method is more optimal for use in classifying stunting in children.