Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analisis Pengaruh Penggunaan Ejaan Yang Disempurnakan (EYD Edisi V) dalam Penulisan Laporan Praktikum Prosman Menggunakan SPSS Nababan, Yohanes; Chamhadani, Shabrina Erissa; Prayogi, Citra; Nurrahmah, Aanisah Rifdah; Armelia, Jessica; Anggraeni, Natalia Desy
Jurnal Bahasa Daerah Indonesia Vol. 1 No. 3 (2024): August
Publisher : Indonesian Journal Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47134/jbdi.v1i3.2526

Abstract

Bahasa memiliki peran penting dalam interaksi antar manusia. Manusia memerlukan bahasa sebagai sarana untuk berkomunikasi dan menjalankan aktivitas sosial. Di Indonesia, Bahasa Indonesia berfungsi sebagai bahasa persatuan yang menghubungkan berbagai suku. Dalam penelitian ini, dilakukannya angket terhadap pengetahuan mahasiswa terhadap pengaruh penggunaan EYD dalam penulisan laporan praktikum proses manufaktur dan dibagikan ke mahasiswa agar mengetahui bagaimana respon mahasiswa terhadap pengaruh tersebut. Kemudian dari hasil data tersebut akan diolah menggunakan SPSS dengan metode uji validitas dan realibilitas. Berdasarkan hasil penelitian terdapat 10 item yang digunakan sebagai variabel dalam penelitian ini. Dari hasil uji validitas semau item yang valid terdiri dari sering penggunaan EYD, pemahaman baik EYD, EYD membantu penyampaian laporan, pedoman penggunaan EYD, penggunaan EYD meningkatkan profesionalitas, peningkatan keterampilan bahasa, penerapan EYD membantu penulisan karya ilmiah, dan penggunaan EYD membantu meningkatkan kredibilitas. Kemudian untuk uji reliabilitas, dengan nilai Cronbach’s Alpha sebesar 0,768 dengan Alpha > 0,6 yang menunjukkan data tersebut reliable.
Penerapan Data Mining Produksi Padi di Pulau Sumatera Menggunakan Analisis Regresi Linear Nababan, Yohanes; Nugraha, Isna
Jurnal Teknik Industri Terintegrasi (JUTIN) Vol. 7 No. 1 (2024): January
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jutin.v7i1.23545

Abstract

Indonesia, primarily an agrarian nation, relies heavily on farming as a livelihood, particularly in rice production. Rice is a crucial commodity, especially in Sumatra. Understanding the influential factors such as rainfall, humidity, average temperature, and harvest area is vital for effective rice production. This research applies the CRISP-DM method: Business Understanding, Data Understanding, Data Preparation, and Modeling. Multiple linear regression analysis is employed using Python programming in Google Colab to assess the impact of these factors on rice production. Results indicate that rainfall, humidity, and average temperature insignificantly affect rice production, while harvest area significantly influences it. The regression model is expressed as Y = 12.3X1 + 1637.1X2 – 159677.3X3 + 5.1X4. This model provides valuable insights for farmers to prioritize influential factors in future rice production
Waste Analysis In CPO Production Using Lean Six Sigma Nababan, Yohanes; Rochmoeljati, Rochmoeljati
Journal La Multiapp Vol. 6 No. 6 (2025): Journal La Multiapp
Publisher : Newinera Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

PT XYZ is a manufacturing company engaged in the production of Crude Palm Oil (CPO). In its production process, a significant amount of waste due to product defects is still found. This can be seen from the production parameters recorded from January to June 2024. Based on 137 samples taken over six months, 132 samples did not meet the company's established standards across four parameters. This study aims to determine the types of waste occurring in the CPO production process, assess the sigma level, provide waste reduction recommendations, and minimize non-value-added activities. The study uses the Lean Six Sigma method. It begins by identifying waste in the CPO production process, with the most dominant forms being defects, overproduction, and waiting. The sigma level of the CPO production process at PT XYZ was found to be 2.20, with a DPMO (Defects Per Million Opportunities) of 240,277.8, which falls into the "good" category based on the average performance of the palm oil industry in Indonesia. Further analysis was conducted to identify the root causes of defects using a fishbone diagram. Improvement proposals were developed using the Failure Mode and Effect Analysis (FMEA) tool. With the design of Process Activity Mapping (PAM) and Big Picture Mapping, the lead time was successfully reduced from 807.22 minutes to 728.88 minutes.